Heat storage in the underground

schill@geo.tu-darmstadt.de

H2020 DEEPEGS project: IDDP-2 well Reykjanes peninsular 4665 m

Hydrothermal potential in Germany

>300 TWh/yr, i.e. 25% of the German heat demand

Agemar et al. (LIAG)

Hydrothermal energy analogue at KIT-Campus North

Largest heat anomaly in Germany with 170°C in 3 km depth

Meixner, pers.comm.

Baillieux et al., 2013

Geothermal potential in Germany including new developments

- New developments
 - EGS Enhanced Geothermal Systems
 - Large-scale and high-temperature heat storage
- >500 TWh/yr, i.e. 40% of the German heat demand

Hydrothermal energy Vision Heat Transition 2040 of **SW///M**

- District heating
 - 80% from geothermal energy (about 400 MWpeak)
 - Heat load in summer: about 120 MW

Waste heat storage

Waste heat from the adjacent refinery

HT heat storage analogue at KIT-Campus North

Proven reservoir: Hydrocarbon field Leopoldshafen

Modelling of design scenarios

19.11.24 I Institute of Applied Geosciences

Slide 8

Geoenergy Campus at KIT (https://www.geoenergiecampus.kit.edu/)

- Concept: Coupling of a deep geothermal power plant for heat supply with a high-temperature aquifer storage facility for the use of excess summer heat in winter.
- Storage Technology: HT-ATES (High Temperature Aquifer Thermal Energy Storage).
- Key technical data:
 - Capacity increase through storage: 33.6 GWh
 - Power increase (4 storage, 2 deep geothermal wells):
 10-11 MW
 - Storage period: 4-6 months
- Increasing the share of RE in heat supply through storage from 25 to > 65%.

Significance of the technology for the German energy transition

- Storage capacity in the about 1'000 depleted hydrocarbon wells in the Upper Rhine Graben
- 10 TWh/a

Stricker et al., 2020

Model of storage potential in the URG

- Generic model with simplified geometry
 - only vertical well or
 - horizontal sections (100m long)
 - six-month cyclic operation

Stricker et al. (2020)

Development of the temperature over 10 years

19.11.24

Challenges in HT heat storage I

T (°C) pH				Al ³⁺		Ca ²⁺	CI ⁻		Fe ²⁺		
80	6.0		(mg/kg)		n/a		3910	67,60	0	78.10	
HCO ₃ ⁻			K ⁺		Mg ²⁺		Na+	SO ₄ ²⁻	5	SiO _{2(ag)}	
216		2	74	814		3	7,900	493	6.51		

Banks et al., 2021

 Example carbonate scaling in geothermal plants of the Pannonian basin

Bloch et al., 2016

Challenges in HT heat storage I

- TDS of foramation water = 120 g/L
- Potential chances from reactive transport modelling
 - Change in reservoir mineral (non-phyllosilicates) concentrations (kg/m³)

Banks et al., 2021

Challenges in HT heat storage II

Self-potential logs from Leopoldshafen field

Variation in porosity and permeability in the URG

19.11.24 | Institute of Applied Geosciences

Slide 15

Expected porositiy and permeability changes

Storage potential in thin reservoirs

Slide 17

• Increase by horizontal sections

 Storage potential of individual wells reaches 10 GWh per year at

- 4·10⁻¹⁴ m² for 20 m thickness in horizontal wells
- 8·10⁻¹⁴ m² for 20 m / 10 m thickness in **vertical / horizontal** wells
- 2-3·10⁻¹³ m² for 10 m / 5 m thickness in vertical / horizontal wells

Storage potential in thin reservoirs in the URG

• Increase by horizontal sections

- Storage potential of individual wells reaches
 - > 8 GWh in horizontal wells in 2/3 of the wells
 - Overall storage potential reaches
 - 10 TWh/a

Helmholtz research infrastructure DeepStor at KIT – Campus Nord

- DeepStor-1:
 - Exploration (logs, cores, hydraulic. tests).
 - Monitoring (3 isolated zones, P/T/seismic sensors, fluid sampling).
- DeepStor-2:
 - Production tests (Pump 1)
 - Injection tests (Pump 2)
- Separation and reinjection of hydrocarbons
- Basin
 - Volume of 4'000 m³
 (i.e., >20 days testing at flow rates of 2 L/s)
- Heat exchanger incl. mobile heating station

3-D geological model

- Based on 3-D seismic and well data (vertical resolution about 40 m)
- Major normal faults Leopoldshafen and Stutensee
- En-echelon branch faults indicating strike-slip component
- DeepStor-1 and -2 target an undisturbed part of the Tertiary sediments.

Complexity of the target layers

- Three compartments separated by two major faults
- Active en-echelon branch faults with diplacements up to >150m
- Considerable difference in thickness across the three compartments
- High and different variability within the compartments
- Extrapolation of data to a wider area is difficult

DeepStor-1 prognosis profil

Field perturbations near the wells after one injection period (6 months)

- Differential pressure
- Temperature
- Vertical stress
- Vertical strain

Field perturbations near the wells after one injection period (6 months)

- Differential pressure and the three principal stress components
- Temperature and the three principal strain components

Vertical displacement through seasonal operation

- Top reservoir
- Surface

19.11.24 | Institute of Applied Geosciences

Slide 25