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Abstract

The surface geothermal water and steam vent chemistry of the Hveragerdi and Olkelduhals
geothermal areas SW Iceland were studied. In total 43 samples were collected of cold springs
and rivers, hot springs, and steam vent discharges and their chemical composition analyzed.

The chemical composition of geothermal waters at surface was characterized by mildly acid
to alkaline pH of 6.06-8.69 and low CI concentration of 3.32-7.34 ppm and with SiO2 and
CO2 generally being the most important dissolved elements with concentration of 38.5-217
and 6.43-486 ppm, respectively. Surface geothermal fluids are considered to be sourced from
three end-member waters and mixture of: (1) boiled reservoir liquid, (2) condensed steam
and (3) non-thermal water. Relationship between Cl, CO2, SOs and temperature show
evident signatures that surface geothermal fluids in the area are dominantly steam-heated
waters with variable mixing ratios between condensed steam and non-thermal waters. No
boiled reservoir liquids were observed at surface, these considered to represent boiled liquid
fraction of reservoir geothermal fluids.

The chemical composition of steam vents was dominated by water (>99 mol%) followed by
CO2 (499-6,587 umol/mol), H2S (17.9-260.4 umol/mol) and Hz (10.2-194.2 pmol/mol). The
composition of steam vents produced upon depressurization boiling of geothermal reservoir
fluids differ within the region with steam vent gases being enriched in CO2 and H»S at
Olkelduhals relative to the Hveragerdi region, those differences may be related to different
heat source for both regions, Hrémundartindur volcanic systems on Olkelduhéls and
Greendalur extinct volcanic system in Hveragerdi. Gas geothermometry of steam vents
estimate temperatures between 230-280°C in Hveragerdi and 280-300°C in Olkelduhals.

The surface manifestations were influenced by seismic events, the 2008 earthquake could
either open and close fractures or faults rupture and affect the appearance of geothermal
manifestations, especially alkaline hot springs reported on previous studies on Hveragerdi
town (boiled hot spring) and the vicinity of Varma river that were not recognized during the
2020 survey; however, fumaroles keep the same characteristic in terms of CO2, H2S and H;
concentration.



Utdrattur

Efnafredi jardhitavatns og -gufu a yfirbordi jardhitasveedanna i Hveragerdi og a
Olkelduhalsi var rannsékud. 43 vatns- og gufusynum var safnad ar kéldum lindum, am,
heitum laugum og gufuhverum, og efnasamsetning peirra akvordud.

Vatn Ur heitum laugum hafdi syrustig & bilinu 6,06-8,69 og lagan styrk CI (3,32-7,34 ppm),
en SiO2 (38,5-217 ppm) og CO2 (6, 43-486 ppm) hofou yfirleitt haestan styrk uppleystra efna.
Likan var sett fram til ad lysa efnasamsetningu jardhitavatns a yfirbordi sem bléndu priggja
frumpétta, sem voru (1) sodinn djupvokvi, (2) pétt gufa, og (3) kalt vatn. betta likan gaf skyrt
til kynna ad vatnid i peim laugum sem skodadar voru reyndist blanda af péttri gufu og kéldu
vatni, i Olikum hlutféllum. Ekkert laugasynanna innihélt sodinn djupvokva ar
jarohitakerfunum.

Gufa tr gufuhverum var ad langsteerstum hluta vatn (>99 moél-%) en adrar helstu lofttegundir
voru CO2 (499-6587 umal/mol), H2S (17,9-260,4 pmaél/mol) og Hz (10,2-194,2 pmal/mol).
Svaedisbundinn munur sést & efnasamsetningu gufunnar, og er gufa a Olkelduhalsi greinilega
rikari ad CO2 og H2S en gufa i Hveragerdi. Pessi munur kann ad tengjast pvi ad hitagjafar
jardhitakerfanna eru dlikir; Olkelduhals tengist eldstodvakerfi Hréomundartinds en
Hveragerdi kulnudu eldstodinni i Graendal. Efnahitamalar sem nota efnasamsetningu
gufunnar, gafu djdphitastig a bilinu 230-280°C i Hveragerdi og 280-300°C & Olkelduhalsi.

Yfirbordsvirkni & jardhitasvedunum breyttist nokkud vid jardskjalftana arid 2008, enda
getur jardskjalftavirkni ordid til pess ad sprungur opnist eda lokist, eda misgengi myndist,
sem allt getur haft ahrif a asynd jarohitavirkninnar. Sér i lagi fundust nu engir hverir med
sodnu, basisku jardhitavatni, en pa matti adur finna i Hveragerdi og vid Varma. Hins vegar
virdist styrkur COz, H2S og Haz i gufu ur gufuaugum ekki hafa breyst.
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1 Introduction

Geothermal activity in Iceland is widespread and relates to active volcanic systems and
tectonics. Iceland is situated on the junction of the mid oceanic ridge (MOR) between the
Eurasian and North-American plates and with the Icelandic mantle plume, making it a
geologically active region. The Icelandic crust is characterized by a high heat flow, ~250
mW/m? within the rift zones and 90 mW/m? off-rift (FIvenz and Seemundsson, 1993).
Within the rift zones, volcanic and geothermal activity is widespread whereas off-rift
geothermal activity is often associated with active tectonics. Many of the geothermal fields
have been explored for utilization with the geothermal resources being an important energy
supply in Iceland and used for house heating, industry, greenhouses and electricity power
production to name some. In 2019, the total direct use of geothermal energy in Iceland was
estimated to be 9,328 GWh and the total installed electricity generation capacity from
geothermal was 755 MW, (Ragnarsson et al., 2021).

1.1 Geothermal activity in Iceland

The geothermal systems in Iceland have been divided into two groups, high- and low-
temperature systems. High-temperature systems are mostly situated within the belt of active
volcanism and rifting and characterized by thermal gradients of >150-200 °C/km and a
magmatic heat source. Low-temperature geothermal systems are commonly associated in
fractured rocks off-rift within the Quaternary and Tertiary formations and have thermal
gradients of <150° C/km (Bodvarsson, 1961; Fridleifsson, 1979). A general map of the
geothermal areas in Iceland is shown in Figure 1.

Icelandic geothermal fluids are of meteoric and seawater origin or a mixture of them, with
temperatures between ~10 and ~450 °C, pH of ~2 to ~10 and CI concentrations of <1 to
>20,000 ppm (Armannsson, 2016; Kaasalainen et al., 2015; Kaasalainen & Stefansson,
2012; Stefansson, 2017). They have been divided into two groups: primary and secondary
type fluids (Arndrsson et al., 2007). Primary fluids, sometimes referred to as reservoir fluids,
are those reaching the deepest level within the geothermal system. With ascent to the surface,
they can undergo chemical and physical changes leading to the formation of secondary
geothermal fluids observed on surface, like hot springs, steam vents and mudpools.
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Figure 1. Geology and geothermal activity in Iceland, High-temperature fields shown as
red circles, and low-temperature areas are shown in dark circles (Steingrimsson, 2014).

1.2 Geothermal exploration

The recognition of a geothermal resource involves geological, geochemical, and geophysical
investigations with a reconnaissance and surface exploration study, followed by the
assessment of all data available and the estimation of the size, reservoir temperature, energy
potential etc. to construct a conceptual model of the system (Richter et al., 2010). A typical
program for the exploration consists of: (1) preliminary study that also includes review of
existing and available data; (2) geological study, with lithological mapping, structural
geology, volcanism, hydrogeology; (3) geochemical survey, that includes fluid sample
collection, analysis and interpretation; (4) geophysics surveys, with resistivity, gravimetry
and magnetic methods to define the extension and dimension of the geothermal reservoir.
The surface exploration often concludes with the definition of potential drilling targets that
are part of the development plan (e.g., Steingrimsson, 2014).

1.3 Study purpose

The purpose of this study was to perform a geochemical survey of the Hveragerdi and
Olkelduhals geothermal areas SW Iceland. Samples of surface geothermal fluids and non-
thermal water were collected and analyzed, and the data interpreted using geochemical
process models with the aim of constructing a geochemical conceptual model of the
geothermal systems.

18



Questions of interest include:

e What are the chemical characteristics of geothermal fluids in the aera and their spatial
distribution?

= What are the processes affecting the composition of the geothermal fluids from
source to surface?

= Have there be potential changes in the fluid geochemistry during past times and
related to geological unrest in the area?

19



2 The study area

The study area includes three valleys and one ridge within the Hengill greater volcanic
system, on the intersection of the Hromundartindur and Graendalur volcanic systems. It is
located 10 km north of Hveragerdi town and 40 km southeast of Reykjavik. The landscape
surrounding is peculiar, with geothermal manifestation throughout the three rivers. A
geological map of the study area with its tectonic settings and volcanic systems is shown in
Figure 2.

2.1 General Geology

The greater Hengill volcanic complex is located on a triple junction formed by the
intersection of Reykjanes Peninsula (RVP), Western Volcanic Zone (WVZ) and South
Iceland Seismic Zone (SISZ). It contains extensional structures related to three volcanic
systems: Hengill, Hromundartindur, and Graendalur; N-S strike-slip structures from the
fissure swarms are characteristics of the transformation zone towards NE-SW spreading
ridges as well as the area is entirely built up with quaternary and post-glacial volcanic events
produced by an intensive tectonic activity through NE-SW volcanic fractures (Steigerwald
et al., 2020).

The general geology is composed of hyaloclastites and interglacial lava flows related to the
Upper Pleistocene and postglacial period, their composition is mostly basaltic ranging from
picrite, olivine-tholeiitic to tholeiitic. These lavas and hyaloclastite form the base of the
bedrock in the area (Kyagulanyi, 1996; Malik, 1996; Seemundsson, 1979; Walker, 1992).
Most of the fractures and faults are oriented NE-SW, NW-SE, and N-S; and, additionally,
veins are filled by secondary minerals in areas of strong alteration caused by progressive
burial. Petrographically, the rocks range from glassy tuffs, through holocrystalline tuffs to
porphyritic tuffs (Eshetu Gemechu, 2017).

The main geothermal manifestations are located within active central volcanos or associated
fissure swarms in the rift zone. The heat source for Olkelduhals is considered to be magmatic
intrusions in the upper crust, two NNE-WSSW striking volcanic fissures erupted in the
Hengill volcano 2,000 and 5,500 years ago (Arnason et al., 1996; Mutonga, 2007). The
Hrémundartindur volcanic system, which last erupted about 10 ka ago has experienced some
more recent magma accumulation dates in 1994-1998 through earthquakes swarms (Clifton
et al., 2002). On the other hand, The Grandalur zone, which is the oldest volcano system of
the complex, presents pillow lavas and associated sediments of the upper Pleistocene about
0.7 Ma. Previous research proposed this system as the heat source of the Hveragerdi
geothermal area (Arnason et al., 1986; Mutonga, 2007).
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Figure 2. Geological map with its tectonic settings and volcanic system within the Hengill

greater volcanic area (based on Arnason et al., 1986 and Seemundsson et al., 2010).

21



2.2 Geothermal activity in the area based in
previous studies

According to previous studies (Table 1), the study area encompasses two high-temperature
geothermal fields, Olkelduhals and Hveragerdi, that are associated with two volcanic
systems, Hrémundartindur in the northwest and Greaendalur in the southeast (Figure 2). The
Olkelduhals system has been described as a carbon dioxide rich system originating from
magmatic CO2 with measured temperature in geothermal wells up to 280°C. The Hveragerdi
field has been described as a geothermal system in its final stage of a cooling process with
seawater component in the reservoir and condensation separation process in the upflow
steam vents. (Bjérnsson, 2007; Geirsson & Arnorsson, 1995).

Table 1. Summary of previous studies on the geothermal area

Research Description
Interpretation of 8 boreholes in the Olfusdalur area including
Xi-Xiang, 1980 Hverageradi, it defined measured temperature, temperature gradient and

Arnorsson &
Gunnlaugsson, 1985

Gestsdottir &
Geirsson, 1990

Arnorsson &
Andrésdottir, 1995

Geirsson &
Arnorsson, 1995

ivarsson, 1998

Zhanxue &
Linchuan, 1998

Bjornsson, 2007

fvarsson et al., 2011

22

aquifer deep.

Gas geothermometry of fifteen steam vents on the vicinity of Hveragerdi
and the drillholes, wellhead temperatures decrease from 230°C in the
north part to 160°C in the south. Discrepancy on CO and H.S, H and
CO,-H; geothermometry were observed due to the condensation / phase
separation process in the upflow steam vents.

Subsurface temperature estimation between 240-250°C obtained by
water and gas geothermometry and the chemical composition of hot
springs, steam vents, and well discharges.

Distribution of conservative components in water, defining the CI/B
ratio in water and discharged wells through Hveragerdi area, the high CI
concentration was explained by a seawater component in the
groundwater system.

Conceptual model of Hveragerdi geothermal field, with reservoir
temperatures of 240-250°C, mixing between seawater and meteoric
water in the reservoir.

Estimation of subsurface temperature based in gas geothermometry for
Hengill area including Olkelduhals, suggesting that Olkelduhals and
Nesjavellir geothermal areas are not connected.

Solute geothermometry with reservoir temperatures 0f183-204°C and
gas geothermometry temperatures of 210-260°C in Hveragerdi area.

Conceptual model of Hengill geothermal areas included Olkelduhéls
based on geothermal well data, with reservoir temperature of 210-280°C.

Reconnaissance of geothermal manifestation in Reykjadalur, Graendalur
and Gufudalur valleys with an interest in gas geothermometry to
estimated subsurface temperature and thermic power.



Kaasalainen & Speciation of aqueous dissolved sulfur in hydrothermal waters including

Stefansson, 2011 Hverageradi controlled by the kinetics and the total sulfur source.
Kaasalainen & Geochemistry of trace elements in surface water and steam including the
Stefansson, 2012 Hveragerdi geothermal field.

Analysis of surface ruptures and geothermal manifestations along the
new fissures caused by the 2008 earthquake event. A fault ruptured over
20 km length at depth.

Geochemistry of Fe(ll) and Fe(l11) in natural geothermal waters
including Olkelduhals ridge influenced by the water pH that reflects the
water type and the various processes resulting in their formation.

Khodayar &
Bjornsson, 2014

Kaasalainen et al.,
2017

Recconnaissance of geothermal manifestation in Graendalur valley to
examine the relationship with geological structures and the changes
occurred after the 2008 earthquake event.

Eshetu Gemechu,
2017

Geochemical composition of geothermal gases in Iceland including

Stefansson, 2017 Hveragerdi

2.2.1 Olkelduhals geothermal area

Olkelduhals is a ridge in the north part of the study area. The geothermal field lies within
Hrémundartindur and Grandalur volcanic systems (Gudmundsson & Brandsdottir, 2010).
The topography of Olkelduhals involves volcanic hills and NE-SW trending ridges with the
highest peaks in the area about 800 m a.sl. while ridge elevations are between 280 and 460
m a.sl. The geothermal activity is controlled by tectonic features and transforms fault zone
with an NW-SE trend through the manifestation from west to east (Okedi, 2006).

The geothermal activity in the area includes steam vents, boiling mud pools, hot springs,
steaming grounds and extensive area of surface alteration. Two rivers, Grendalsa and
Reykjadals4, derived from both cold and hot springs, drain the area towards the south and
west (Natukunda, 2005). Geothermal reservoir fluid temperatures based on gas
geothermometry indicate subsurface temperatures above 300°C (Ivarsson, 1998). Three
wells have been drilled on the area, they present extremely permeable formation at 1000-
1200°C with highest measured temperature of 256°C on HE-20 geothermal well (Bjérnsson,
2007)

2.2.2 Hveragerdi geothermal area

Hveragerdi geothermal area includes the Hveragerdi town located about 50 km east of
Reykjavik and is surroundings that present geothermal manifestations. Within the area, there
are 17 geothermal wells; 8 wells are labeled HV and 9 labeled HS. Some of the geothermal
wells provide energy to the heating system, hot water and services to the town (Bragaddttir,
2019). The Hveragerdi geothermal field is commonly divided into four sub-areas and include
the valleys Reykjadalur, Greendalur and Gufudalur as well as the town Hveragerdi and
surroundings.
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Reykjadalur is a valley south of Olkelduhéls. The area is well known as a tourist attraction
due to the hot river Reykjadalsa which has a comfortable bathing temperature year around.
The geothermal activity in Reykjadalur is characterized by steaming ground and hot springs
that feed the river running down the valley.

East of Reykjadalur lies Graendalur, followed by Gufudalur. Graendalur is separated from
the other valleys by agglomerate basalt units, Dalafell on the west and Tindar in the east.
Those hyaloclastites are the topographic boundary of the valleys but landslide deposits cover
the area within the depression (Kyagulanyi, 1996). The river Graendalsa comes from the
Alftatjorn lake, flows through the Graendalur valley and is then joined with Reykjadalsé. The
resulting river is from then on called Varma. Geothermal manifestations in Graendalur and
Gufudalur are somewhat similar, characterized by steam vents and hot spring, thermal rivers
and streams and mud pools.

Hveragerdi field is situated south of the three valleys within and around the Hveragerdi town.
The geothermal activity in Hveragerdi is characterized by hot springs, steam vents and mud
pools, the water classification based on cations and anions diagram showed Na-HCOs3 and
NaCl waters. The water manifestations mainly corresponded to steam heated waters and
boiled waters recognized in the conceptual model using carbonate-silica mixing models
(Geirsson & Arndérsson, 1995) 17 geothermal wells were drilled for commercial and
scientific purposes, the geothermal wells are located within this part of the area where the
measured temperature goes from 215°C to 230°C on the northern part, and from 167°C to
198°C for the southern part. The conceptual model for the area estimates a maximum
reservoir fluid temperature about 250°C (Geirsson & Arnorsson, 1995).
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3 Methods

3.1 Sampling

Sampling of surface geothermal fluids was carried out between 23 September and 14
November 2020 (Figure 3). In total, 43 samples were collected that included 7 river samples,
6 cold springs, 15 hot springs, and 15 steam vents. Sample locations are listed in Table 2 and
shown in Figure 4.

Water samples were collected using previously described methods (Arnérsson et al., 2006;
Armannsson & Olafsson, 2007). Four sample aliquots were collected at each site. For
determination of pH, CO and conductivity an untreated sample was collected to a 250 mL
amber-glass bottle. For determination of major cations, the samples were filtered (0.2 um
cellulose acetate) into 100 mL HDPE bottles and acidified using concentrated HNOs acid
(Suprapur Merck, 1 mL acid to 100 mL sample). Samples for determination of major anions
were also filtered (0.2 um cellulose acetate) into 100 mL HDPE bottles but not further
treated.

Steam vents samples were collected into evacuated and pre-weighed 250 mL gas bulbs that
contained ~50 mL of 40% NaOH. For sampling, a funnel was placed over the steam outflow
and covered with soil to prevent atmospheric air contamination. The funnel was connected
to a titanium tube and reaches the gas bulb via silicone tubing. A piece of tubing, about 5 cm
in length, is connected to the distal sample port and fitted with a clamp, after flushing the
sample ports with steam for about 2 min, the clamp is closed, and the bottle is opened to
collect the sample while cooling continuously (Arndrsson et al., 2006).

Table 2. General information and geocoordinates of the sampling points

Sample Label Sampling date Type :\‘15?\7;2 I\éVNe;tg Altitute [m]
YF20-001 OLK-01 23.09.2020 River 396866 392318 352
YF20-002 OLK-02 23.09.2020 Cold spring 396810 392848 347
YF20-003 OLK-03 23.09.2020 Cold spring 396942 392865 360
YF20-004 OLK-04 23.09.2020 Steam vent 396898 391254 393
YF20-005 REY-05 23.09.2020 Hot spring 395920 391165 277
YF20-006 REY-06 23.09.2020 Hot spring 395875 391377 272
YF20-007 REY-07 23.09.2020 River 395877 391446 273
YF20-008 REY-08 23.09.2020 Hot spring 395812 391286 287
YF20-009 REY-09 24.09.2020 Steam vent 395958 392605 240
YF20-010 GRA-10 24.09.2020 Hot spring 396016 392592 233
YF20-011 GRAE-11 24.09.2020 Steam vent 396154 391858 367
YF20-012 REY-12 24.09.2020 Hot spring 395891 391264 273
YF20-013 REY-13 24.09.2020 Steam vent 396070 391108 287
YF20-014 REY-14 24.09.2020 River 396164 391106 281
YF20-015 REY-15 24.09.2020 Steam vent 396197 390700 347
YF20-016 GRA-16 15.10.2020 Hot spring 395702 392533 232
YF20-017 GRA-17 15.10.2020 Hot spring 394781 392760 204
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YF20-018
YF20-019
YF20-020
YF20-021
YF20-022
YF20-023
YF20-024
YF20-025
YF20-026
YF20-027
YF20-028
YF20-030
YF20-031
YF20-032
YF20-033
YF20-034
YF20-035
YF20-036
YF20-037
YF20-038
YF20-039
YF20-040
YF20-041
YF20-042
YF20-043
YF20-044

GR/-18
GRA-19
GRA-20
GRA-21
GRA-22
GRA-23
GRA-24
GRA-25
GRA-26
GRA-27
GRA-28
GUF-30
GUF-31
GUF-32
GUF-33
GUF-34
GUF-35
GUF-36
GUF-37
GUF-38
GUF-39
GUF-40
GUF-41
GUF-42
GUF-43
GUF-44

16.10.2020
16.10.2020
16.10.2020
16.10.2020
20.10.2020
20.10.2020
20.10.2020
20.10.2020
20.10.2020
20.10.2020
20.10.2020
03.11.2020
03.11.2020
03.11.2020
03.11.2020
03.11.2020
03.11.2020
03.11.2020
10.11.2020
10.11.2020
10.11.2020
10.11.2020
10.11.2020
10.11.2020
10.11.2020
14.11.2020

Steam vent
Steam vent
Steam vent
Steam vent
Hot spring
Hot spring
River
Steam vent
Steam vent
Hot spring
River
Steam vent
Cold spring
Cold spring
Hot spring
Hot spring
Cold spring
Steam vent
Hot spring
Steam vent
Hot spring
Cold spring
Steam vent
Hot spring
River
River

396209
395702
394897
393265
393796
393706
393215
393681
393018
393399
392789
393180
393186
393195
392983
392930
392756
392393
392371
391776
391602
391598
391266
391267
391789
392186

392739
392508
392776
392574
392608
392513
392370
392490
392190
391924
391567
393819
393831
393868
393708
393714
393748
393725
393496
393524
393322
393421
393414
393455
393007
392907

274
239
210
212
131
140
84
144
80
107
91
183
184
195
162
174
177
232
118
142
80
96
71
75
60
67
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Figure 3. Sampling survey: a) Field recognition in Gufudalur valley; b) Sampling of the
steam vent GUF-38 in Gufudalur; c) Sampling of the carbonate spring OLK-03 in
Olkelduhéls; d) Sampling of the hot spring GRA-27 in Greandalur.

3.2 Chemical analysis

The chemical analysis of water composition involved both on-site and laboratory analysis.
A summary of the analytical methods and related information are summarized in Table 3.
On-site, the concentration of dissolved H>S was analyzed using a Hg-precipitation titration
and the pH determined using a combination glass electrode. In the laboratory, the major
anions (F, Br, Cl, SO4) were analyzed using ion chromatography (Dionex 1CS-2100). The
concentration of major cations (SiO2, B, Na, K, Ca, Mg, Al, Fe) and selected trace elements
(As, Ba, Cr, Cu, Mo, Li, Mn, Mo, Ni, Zn, Ti) were analyzed using Inductively coupled
plasma - optical emission spectrometry (ThermoScientific iCAP 7400 ICP-OES). Dissolved
inorganic carbon (CO) and electrical conductivity were analyzed within two days after
sampling using a modified alkalinity titration and conductivity meter, respectively.

The concentration of CO. and HzS in steam vent samples were analyzed in the steam
condensate using the previously mentioned titrimetric methods for H.S and CO.. Non-
condensable gases (CH4, H2, N2, Oz, and Ar) were further analyzed using a gas
chromatography (GC, Perkin Elmer Arnel GC PEA-4019) with thermal conductivity
detectors. The amount of water was determined gravimetrically.
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Figure 4. Sampling points of the south side of Greendalur, Gufudalur and Hveragerdi. Also
shown are locations of previous studies sampling surveys.
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Table 3. Analytical methods, units, detection limits, standard solution and verification

Analvtical Measurement Detection Analytical Verification
Component Met);lod Concentration Limit standards method
range (ppm) (ppm) used
CO, Titration <20 - Trlpllca_lte
analysis
H,S On-site 0.01-03 0.01 Duplicate
titration analysis
F IC 0.01-2.00 0.01 Triplicate
Cl IC 0.01 - 100.00 0.01 Standard analysis and
. measurement
Br IC 0.01 - 20.00 0.01 solution (a) comparison
SO, IC 0.01-100.00 0.01 (e)
Al ICP-OES 0.005 - 1.00 0.005
As, B ICP-OES 0.003-2.00 0.003
Ba ICP-OES 0.0002 - 2.00 0.0002
§ Ca ICP-OES 0.004 - 50.00 0.004
= Cr,Cu ICP-OES 0.002 - 1.00 0.002
'% Mo ICP-OES 0.001 - 1.00 0.001
= K ICP-OES 0.2 -10.00 0.2 .
. Triplicate
Li ICP-OES 0.008 - 1.00 0.008 analysis and
Standard
Mg ICP-OES 0.01-1.00 0.01 solution (b) measurement
Mn ICP-OES 0.0003 - 1.00 0.0003 ComF():)“SO“
Mo ICP-OES 0.002 - 1.00 0.002
Na ICP-OES 0.04 - 100.00 0.04
Ni ICP-OES 0.0003 - 1.00 0.0003
Zn ICP-OES 0.0002 - 1.00 0.0002
Sr. ICP-OES 0.1-4.00 0.0005
Ti ICP-OES 0.002 - 1.00 0.002
SiO; ICP-OES 0.12 - 50.00 0.12
COzand Titration Trlpllce_lte
H2S analysis
® H; GC-LGA 0.01 %-vol .
£ cH GC-LGA 0.01 tovol S MiXture (©)
- 01 %-
o ! measurement
R 02 GC - Ar 0.01 %-vol comparison
N; GC - Ar 0.01 %-vol  Gas mixture (d) (c.d)
Ar GC- Ar 0.01 %-vol

(a): Seven calibration solutions prepared from the dilution of 1000 mg/L primary standard solution
(Merck TraceCERT) for all four ions.

(b): Five calibration solutions prepared from the dilution of a 1000 mg/L primary standard solution
(Merck TraceCERT) for all analysis cations and trace elements.

(c): Measured using a certified standard from Linde gas with known concentrations for each gas. The
gas standard contains 19.8% H,, 30.0% CO; and 10.0% CHa.

(d): Measured using atmospheric air as standard. Concentrations 78.1% N2, 21.0% O, and 0.93% Ar.

(e): Measured comparison every 5-7 samples with a reference sample that can be: VMS-G (in-house
reference sample), Kalt Ru (in-house reference sample), Dionex CRM with 5 anions at known
concentrations (F, Cl, NOs, PO4, SO4), or Permix (Merck TraceCERT-CRM with 33 elements at known
concentrations). Silica is determined against the Spoastadir in-house standard.
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For the water analysis, the precision is expressed in terms of: (1) Relative standard deviations
(RSD) between the triplicate analysis. Their values range would depend on the instrument,
parameter, and sample analyzed. In general, for the total set of analysis: the ICP analysis
below 3.5%, for IC analysis below 4.8%, for titration below 3% and no data of GS (2)
Recovery percent between the standard analysis measurement comparison, those include the
comparison of the reported standard concentration with the obtained measurement during
the analysis. The recovery percent ICP analysis is an average of 94 — 108%, compared to
Permix standard; I1C analysis is an average of 95-110%, compared to VMS-G standard.

3.3 Previous studies data

The current dataset was extended using previously published values of surface geothermal
and borehole fluids. These included 28 samples of cold springs, hot springs and acid hot
springs, 56 steam vents and 6 boreholes sampled from 1982 to 2019 (Arndrsson &
Andrésdattir, 1995; Arnérsson & Gunnlaugsson, 1985; Ivarsson et al., 2011a; Kaasalainen
& Stefansson, 2012; Stefansson, 2017, Oskarsson, 2020).

Chemical analysis of three boreholes from Olkelduhals were obtained from Orkuveita
Reykjavikur (Fridriksson, personal communication, March 4, 2021).

3.4 Data treatment

The geochemical treatment of the data included: calculation of reservoir fluid composition
from data based on well fluid discharges previously published, assessment of source and
mixing of surface geothermal water and gas geothermometry.

3.4.1 Reservoir fluid composition

The calculations of reservoir fluid composition from data for two-phase (liquid and steam)
borehole fluid composition were carried out using the WATCH program, version 2.4
(Bjarnason, 2010). For these calculations, liquid only reservoir fluids were assumed and
adiabatic boiling from reservoir to surface. The calculations of the reservoir fluid
composition are based thus on conservation of enthalpy and mass,

m/"t = m&t = x4m®* + (1 — x47)ym* 1)

hf,t — hd,t — Xd,vhd,v + (1 _ Xd,v)hd,lq (2)

where m; denotes the molal concentration of the i-th component, X is the vapor fraction, h
is the enthalpy, and f, t, d, v, and Iq are the fluid, total, discharge, vapor, and liquid phase,
respectively.
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3.4.2 Gas geothermometry

Gas geothermometry was calculated using previously published temperature functions as
shown in Table 4 (Arndrsson & Gunnlaugsson, 1985). Nine different equations (Equation 3
to 11) were applied, that are based on gas-mineral and gas-gas equilibria. In some cases,
possible steam condensation occurring upon fluid ascent to surface are considered for these
gas geothermometers.

Table 4. Gas geothermometry as a function of reservoir temperature

Geothermometer Temperature function Equation

[CO,] T =-441+269.25-Q —76.88- Q% +9.52- Q3 (3)

[F —T] T = 244.6 — 17.447-Q — 0.16 - Q2 — 0.0524 - Q3 (4)
[H,S] T =246.7 + 44.81-Q (5)

[H,] T =277.2+20.99-Q (6)
[CO,/H,] T =341.7 — 2857 Q (7)
[H,S/H,] T =304.1 —39.48-Q (8)
[H,S] T =173.2465.04-0Q (9)

[H,] T =212.2+3859-0Q (10)
[CO,/H,] T =311.7-66.72-Q (11)

Equations 3 and 4 use temperature as a function of CO2 concentration and the equilibrium
constant for the Fischer—Tropsch reaction that involves CO2, CHa4, and Hz concentrations in
steam vent steam. Equations 5, 6, 7, 8 use concentration of H,S, Hz, CO2/H> and H2S/H>
respectively, those are adjusted to either all water reservoir temperature above 300°C or
water reservoir in the range 200-300°C with chloride concentration over 500 ppm. Equations
9, 10, and 11 use concentrations of H.S, H>, and CO2/H> respectively and are adjusted to
either all water reservoirs below 200°C or water reservoir in the range 200-300°C with
chloride concentration below 500 ppm.

3.4.3 Quantification of fluid sources and mixing for hot springs

In a geothermal system, thermal fluids ascend from the reservoir to the surface due to density
driven circulation through fractures or up-flow zones. During such ascent, several processes
may affect the water composition, including boiling and formation of steam and boiled liquid
water and mixing with non-thermal surface and shallow ground water (Arnérsson et al.,
2007).

Following Stefansson et al., (2016b) the end-member producing various geothermal fluid
features at surface may include: (1) boiled reservoir water (brw), (2) non-thermal
waters(ntw) and (3) condensed steam (cs) and mixtures thereof. Assuming Cl and
temperature to be preserved upon mixing of the various end-member components, the system
can be described by three equations:
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mlt = XSm& + XPrWwmbIw 4 xntwmntw (12)
TEIZ‘L — XcsTCcls _|_XberCblrw _|_XnthCnltw (13)

1 = XS 4 xbrw 4 yntw (14)

where X is the fraction of each endmember, T is temperature in °C, mg; is the chloride
concentration in ppm.

To solve for X%, XP™and X" we apply Cramer’s rule to obtain,

Xes = Des/D (15)

Xorw = Dbrw /D) (16)

Xnow = Dntw /) (17)

where,

D=mg (TP — T"W) -TS(m@[™ — mg™ )+(me "V T™Y — mgvTo™v) (18)
Des =m(TP™ — T™™W) -T™(mZY — mg™ ) +(m@W T — mppTo™) (19)
Dorw=mE(T™ = T) Tl = )+ (u T — mif*T™) (20)
Dotw=m&(TP™ —T™) -T(mP[™ — m@)+(m&V'T™ — mgT™) (21)

With this approach negative values are possible as well as values greater than 1. Such values
have no physical relevance as the source of a given end-member water cannot be <0% and
>100%. The physical reason for such negative values is thought to be temperature decrease
due to conductive cooling to the surroundings, loss of water mass through evaporation,
natural variability of the end-member fluid composition and/or uncertainties associated with
the chemical analysis of individual water samples (Stefansson et al., 2016b).

The end-member fluid types composition can be assessed through WATCH program
(Bjarnason, 2010) assuming adiabatic boiling from the reservoir condition to the surface at
100°C. Two phases wellhead discharged from previous studies datasets (Supplement 3) were
modeled to estimate water end member composition:

(1) Geothermal reservoir waters (gr), based on the species composition of the reconstruction
of the reservaoir.

(2) Boiled reservoir waters (brw) were estimated based on the adiabatic boiling of the
geothermal reservoir upon surface at 100°C and 1 bar.

(3) Condensed stam (cs) were obtained under the same model of boiled geothermal
reservoir using the steam phase at 100°C and 1 bar and followed by the aqueous
speciation with PHREEQC.

(4) Non-thermal waters (ntw), represented by the average of rivers and cold spring on the
area with an average of 7 ppm of chloride and temperature below 9°C.

32



4 Results

4.1 Chemical composition of steam vent
samples

In total, 14 steam vent samples were collected and analyzed for H.O, COz, H,S, H2, CHg,
N2, Oz, and Ar (Table 5). In addition, 56 steam vents samples previously reported were
compared with the data obtained in the study (Supplement 1).

The steam vent fluids are dominated by water vapor for both Olkelduhals and Hveragerdi
geothermal fields with accounting for 98.9-99.9 mol%. The steam vent fluids are generally
more gas rich at Olkelduhals with CO2, H.S and Hz concentrations of 4944-9984 pmol/mol,
195-389 pumol/mol and 97-213 pumol/mol compared to at Hveragerdi 499-7812 pumol/mol,
12-260 pumol/mol and 1-247 umol/mol, respectively. The concentrations of other gases for
non-air contaminated samples were generally low.

Table 5. The chemical compostion of steam vent discharges. Concentrations are expressed
in pmol/mol total fluid.

Temp.
[°C]
YF20-004  OLK-04 97.3 993061 6587 195 149 446 037 3.2 0.04
YF20-009  REY-09 98.3 998008 1814  96.0 523 167 217 253 0.34
YF20-011 GRA-11 98.4 997321 2393 166 927 1.08 0.02 260 0.39
YF20-013  REY-13 98.5 997710 2124 105 547 085 nd 5.2 0.10
YF20-015 REY-15 91.7 995740 3910 249 908 212 nd 7.7 0.17
YF20-018 GRA-18 98.2 997722 2132 934 303 157 nd 203 0.37
YF20-019 GRA-19 97.4 997562 2157 211 525 137 nd 16.0 0.30
YF20-020 GRZA-20 96.3 997854 1928 115 343 187 001 648 134
YF20-021  GRA-21 97.5 998221 1541 116 86.8 150 161 312 054
YF20-025 GRA-25 98.8 997112 2331  260. 194 395 nd 968 1.81
YF20-030  GUF-30 97.8 998604 1169  60.2 48.7 440 0.06 110 235
YF20-036  GUF-36 98.1 997838 1994  58.0 450 277 001 608 129
YF20-038  GUF-38 98.2 999203 736 324 102 048 nd 16.8 0.35
YF20-041  GUF-41 93.8 999429 499 17.9 103 051 028 426 nd

Sample Label® H20 CO2 H2S H2 CHs 02 N2 Ar

(a): The suffix label refers to the sampling area as: OLK: Olkelduhals, REY: Reykjadalir, GR/: Graendalur,
GUF: Gufudalur.

4.2 Chemical composition of surface water
samples
In total, 28 samples of surface waters were collected, including cold and geothermal springs

and rivers. The results are reported in Tables 6. In addition, previous results on surface water
composition were gathered (Supplement 2).
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Table 6. Chemical components concentration of the water samples
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Table 6. (continuation) Chemical components concentration of water samples
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The water temperature ranged from 2.2 to 96.7°C and the pH was between 5.45 and 8.38.

The sampled waters were characterized by lower CI concentration between 3.32-10.2 ppm
and large range of CO. and SOs concentration of 6.43-844 ppm and 4.27-111 ppm,
respectively. The concentrations of most cations were also very variable, with concentrations

ranges of SiO2 = 16.7-217 ppm, Na

ppm, Ca

0.03-17.1

6.43-58.4 ppm, K = 0.52-10.4 ppm, Mg
0.001-65.1 ppm. The results were reported in Table 6.

2.26-65.7 ppm and Fe =
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4.3 Chemical composition of borehole fluids

Several boreholes have been drilled into the geothermal area. Samples of such borehole
fluids were not collected and analysed during the field campaign. Instead, recent data from

Olkelduhals and Hveragerdi were included (Table 7).

Table 7. Borehole fluids composition from previous studies

(T20Z ‘v yoleN ‘uonesiunwwod jeuostad ‘U0SSYLIQLIH *d) :palioday :(0)
(020z ‘uossiexsQ) :pauioday :(q)
(e9T0Z “'[e 18 UOSSUBY3]S) :panioday :(e)

vy TEL IR 74 1602 60 100  S00°0 oT'e vL've v'12e 2¢-3H
vy TLE €0t L0 6€€C 60 €500 8T00 62'S 1.°2€ 8'GeC 02-3H
€8T z'8e '9G 60 LT 80 1200 2000 85T 702 7£'88T 20-3H
29 g9 A4S 12 62T 70 8000 600> 8.°C 70T 0T 60-SH
vez  TSE Ve 90 €987 G000 8000 89T 82'T¢ 8'9/T L0-SH
VAN AV 982 T TLT 9000 1200 qT'e zLoz Y91 90-SH
26T L'ey a7 8'T G'60T 10 8000 2000 eLT v'eT €€qT ¥0-AH
78T 10V v L'T et 0 8T'C 8'€T 89T 20-AH
g'ze G'8¢ 60 19T 0 ge'e 98T G/T 90-AH
[wdd] [wdd]  [wdd] [wdd]  [wdd] [wdd] [wdd] [wdd] [wdd] [wdd] [wdd]  (-+-uoypnuyuos)
S¢H  vOS 200 4 o} [\ EE BIN 0] M eN EOL
929T Iy  €2/€T6 206 ze O¥T  SS5ZTZ- 290v9 902T'T0  ZZ-3H 2€15-9002
1708 t¥Z/€S58  06TT 6501 g 862'TZ- 6S0Y9  90°G0°0€  0Z-3IH €805-9002
99'69€ ¥2/TZ6 066 47 v'e GZTe-  8S0Y9  S6'80°0€  20-3H 2025-G66T
160 G€¢  22/926 Gzl Ge oyT  /8TTZ- SO0Y9 6TTTET  60-SH ©60856-9
660 /vy 02/988 T 88T  /8T'TZ- 966'€9 T8906T  LO-SH ©LT0E-T8
G6°0 vy 02/09°6 0T 08T  96T'TZ- 666€9 T8906T  90-SH ©9T0E-T8
290 18C  02/288 89 v9T  98T'TZ- TI0¥9 6L/08T  ¥0-AH ©Z2E0E-6.
65¢ 6T/626 Gy 8T 6LTT'8C  20-AH ©9ET0-6.
15€  6T/07'6 8'g 85T 6. 1182 90-AH ©GET0-6.
[wdd]  [wdd] [woysr]  [6y/01] [4eq] [0  v8SOM  v8SOM  Burdwes
Do/ Hd lage s|dwes
g ZoIs puod  Adreyu3 aunssald dwel 1se3 YuoN a1eq

36



Table 7. (continuation) Borehole fluids composition reported in previous studies

H20 CO2 H2S H: CHa N2 O2 Ar
Label [umol/mol]  [umol/mol]  [pmol/mol]  [umol/mol]  [umol/mol]  [umol/mol]  [pmol/mol]  [pmol/mol]
HV-06 999381 239 15.9 19.3 1.22 0 0 0
HV-02 999144 337 16.0 11.6 1.21 0 0 0
HV-04 998222 661 235 21.9 2.34 73.6 0 0
HS-06 996838 1015 48.3 23.0 1.55 369 0 5.06
HS-07 996170 1256 109 21.0 247 330 0 16.2
HS-09 998363 591 21.8 7.56 1.18 90.0 2.59 1.85
HE-02 999990 11209 76.0 1.87 0.00 7.57 0 0
HE-20 999859 5359 676 105 0.69 33.2 0 2.97
HE-22 999868 2442 101 0 0 130 0 1.85

The liquid phase was characterized by alkaline pH of 8.53-9.50, relatively high CI
concentration of 110-234 ppm, elevated SiO2 and Na concentration of 235-580 ppm and
153-236 ppm, respectively, low Mg concentration of 0.002-0.020 ppm. The vapor phase is
dominated by H.O with more than 99.9% mol/mol, followed by CO2, H>S and H: with
concentrations of 239-11209 pmol/mol, 15.9-676 pmol/mol and 1,87-105 pmol/mol,
respectively. Boreholes distributed in Olkelduhals present higher non condensable gases
concentration than Hveragerai.
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5 Discussion

5.1 Reservoir fluid composition

The geothermal reservoir fluid composition was calculated based on chemical composition
of two-phase (liquid and steam) borehole discharges (Table 7) using WATCH software as
outlined on section 3.4.1. The modelling results are given in Supplement 3. Differences in
composition and temperature are observed between areas. The temperature estimation is
based on the quartz geothermometer, it lies between 213 and 246°C for Olkelduhals and
between 185 and 235°C for Hveragerdi. Total CO; is enriched in Olkelduhals ranging from
1007 to 3816 ppm compared to the average 200 ppm in Hveragerdi; same trend is observed
in total H,S. Regarding pH, the primary fluid in Olkelduhals is slightly acid with pH 5.7 to
6.4 meanwhile Hveragerdi is neutral with pH between 5.8 and 7.5. Chloride concentration
also differs between both primary fluids, Olkelduhals present higher concentration (154 —
189 ppm) than Hveragerdi (105 — 154 ppm).

5.2 Boiling, steam condensation and mixing
process

Reservoir geothermal fluid can undergo changes from depth to surface. These include
boiling and formation of boiled liquid and steam, condensation of the steam phase upon
cooling, mixing of the boiled liquid and/or steam with non-thermal water and chemical
reactions like mineral precipitation and oxidation when in contact with atmospheric oxygen.

Four main type of surface waters can be distinguished in general: 1) Boiled liquid reservoir
water typically displaying alkaline pH value and elevated CI concentration similar to the
reservoir fluid, 2) steam heated waters that are formed upon steam condensation and mixing
with non-thermal water often followed by oxidation of H>S to SO4. Such waters typically
display low pH, low CI concentration and elevated SO4 concentration, 3) carbonate waters
that are formed upon CO2 mixing and sometimes steam condensation and mixing with non-
thermal water. Such waters typically have mildly acid pH, low CI concentration and elevated
CO: concentration. 4) non-thermal surface water and groundwater.

The variable end-member waters can be defined or assessed based on reservoir fluid
composition, boiled to 100°C and data on steam vent discharges and non-thermal waters.
These include boiled reservoir liquid water (brw) and condensed steam (cs) that was
estimated based on the adiabatic boiling of the geothermal reservoir fluids to 100°C and 1
bar, corresponding to surface conditions, and non-thermal waters (ntw), represented by the
average of 6 rivers samples and 3 cold springs. For the boiled liquid water and condensed
steam, the sample HV-06 was used for Hveragerdi field and HE-02 for the Olkelduhals field.
A summary of the end-member water compositions is given in Table 8.
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Table 8. Composition of water end members, as measured or modeled. Units are in ppm

Geothermal Non-thermal Boiled reservoir Condensed
reservoir water (gr) waters (ntw) water (brw) steam (cs)
Hve Olk Average Hve Olk Hve Olk
T[°C] 209 230 6 100 100 100 100
pH 7.40 8.99 7.80 8.55 7.87 2.87 2.67
B 0.554 1.42 0.002 1.14
SiO2 319.8 384.5 29.7 530.1 396.1
Na 156.8 182.5 9.39 196.9 207.8
K 14.9 214 1.04 24.85 225
Mg 0.01 0.003 3.80 0.025 0.002
Ca 1.05 1.05 14.65 2.58 1.74
F 1.278 0.473 0.05 1.15 1.00
Cl 140 176.6 6.22 205.3 195.3 6.3 6.3
SO4 36.7 50.0 13.2 44.6 100 48.8 65.2
Al 0 0.84
Fe 0.004 0.025 0.03 0.007 0.030
CO2 190.16 2459 48.1 354 120 1042 17049
H2S 10.96 324 8.84 3.07 95 152

The variable water types may be identified using the relationship between temperature, Cl,
S04, CO2 and pH. The samples present low chloride concentration, but often high and
variable carbonate and sulphate originating from steam condensate and CO> and H-S gas
mixed with non-thermal shallow ground- and surface water followed by oxidation of H2S to
SOs. Gufudalur hot springs (i.e. GUF-39 and GUF-34) are near neutral pH sulphate (Figure
5¢) and Reykjadalur hot springs are near neutral pH carbonate (Figure 5c¢ and 5d);
nevertheless, those samples might not been defined as acid steam heated waters since its pH
is above 5. Graendalur steam-heated waters present a neutral pH with lower carbonate
concentration compared to Reykjadalur. Alternatively, temperature-chloride diagram
(Figure 5a) shows low chloride concentration at boiling temperature, typical of condensed
steam end member geothermal water (cs). Regarding previous data (Stefansson et al.,
2016a), it includes several acid sulphate waters and boiled hot springs on the vicinity of
Varma river; however, end members components may not have changed during the present
survey compared to previous studies.
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Figure 5. Water classification based on diagrams for: a) Temperature vs. chloride; b)
sulphate vs. chloride; c) SO4/Cl vs. pH and d) HCOs vs. chloride.

The oxidation of H>S to sulfuric acid when exposed to atmospheric oxygen results on the
loss of H.S and the enrichment of SO4 in steam heated waters and decrease of pH (Stefansson
et al., 2016b), this process is observed in GUF-34 where there is an SO4 addition from 65
ppm to 96 ppm compared to steam condensed end member (Figure 5b). However, the rest
of steam heated waters present SO4 loss compared to the end member, caused by the
degassing of H.S and little oxidation of sulfuric acid, this is also observed on pH ranging
from6to 9.

Carbon dioxide (COy) is largely degassed in steam heated waters (Figure 5d) caused either
by the mixing process with non-thermal waters or the degassing of those gases. Carbon
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dioxide differs drastically between the steam condensed endmember in Olkelduhéls and
Hveragerdi with 17049 ppm and 1042 ppm respectively.

Mixing of various water samples for Hveragerdi and Olkelduhals are shown in Figure 6,
based on the chloride and temperature diagram. All samples lie on a mixing between non-
thermal waters and condensed steam, and no samples belongs to the boiled reservoir water.
This diagram also shows that all samples lie in the mixing zone between non-thermal waters
and condensed steam. Steam heated water is produced by the condensation of steam vents
at surface followed by a different degree mixing with non-thermal waters coming from the
shallow and the rainwater. Variations on chloride concentration through the study area are
small, between 4 and 10 ppm, mainly explained by the distribution of chloride in non-
thermal waters and its variation in precipitation. Rainwater tends to be enriched in chloride
on coastal zones and depleted in high ridges.

%brw
01

0.8 Previous'data  \0.2
0
21 GRA-27 GRE-23 SUF2 0 9
= S~
£ | | | S
8 (1K-03 0.2 0.4 0.6 0.8 1

Figure 6. Mixing ratios using the end-member composition: boiler reservoir water (brw),
non-thermal waters (ntw) and condensed steam (cs) based on equations (12) to (14).

5.3 Fluid- rock interaction

Boron and chloride are considered conservative elements, meaning that they do not
precipitate once added to the fluid phase. The concentrations of chloride and boron are
shown in Figure 7a where variations in chloride concentration were observed through the
end members: (1) non-thermal waters waters, with low chloride concentration; and (2)
geothermal reservoir waters, with more than 10 times higher concentration. Steam heated
waters keep similar chloride concentration as surface waters but boron increasing towards
bedrock ratio. In general, samples have CI/B ratio close to the seawater ratio due to the

41



presence of a small seawater/saline-groundwater component from the hydrogeology of the
area. The CI/B source may come from an initial rainwater composition with addition of
atmospheric Cl™ as seawater spray and aerosols, which originally correspond to rain water
(Arnorsson & Andrésdattir, 1995). No evidence of progressive water rock interaction for our
dataset was found.

The reaction between the water with the surrounding rocks at surface level may change some
components concentrations and can be assessed by those changes in sensitive elements such
as SiOz, Na, and Mg (Stefansson et al., 2016b). After depressurization and boiling of the
geothermal reservoir, the steam ascends to the surface on both geothermal areas creating
condensed steam and dissolving the host rock and eventually form clays. It changes the
composition of the steam heated waters suggesting the loss or gain of an element upon ascent
to surface.

Significant enrichment of Na, Mg and Fe is observed in the dataset compared to the mixing
fractions from chloride and temperature model, the addition of those elements in the water
results from the water rock interaction at surface zone with an equilibrium with the host rock
and the formation of secondary minerals. Iron is an element that increase its concentration
due to the addition of H,S during degassing. Sample OLK-03 presents the highest iron
concentration (about 100 ppm) caused by a strong acid leaching between the basalt primary
rock and secondary clays (Figure 7c and 7f). It is identified by a coating of the gravel with
red-brown iron oxides, and bubbles of CO; raising on the water. The second and third highest
iron concentrations are found in REY-08 and REY-05 with less than 10 ppm Fe. Minerals
in Olkelduhals contain quartz, anatase, pyrite, smectite, and kaolinite (Kaasalainen &
Stefansson, 2011). Pyrite was the predominant sulfur-bearing mineral reflecting the
mobilization of Fe from the host rock (Ludyan, 2020). The total iron concentration is
governed by the pH. Iron redox equilibrium is approached with Fe(ll) and Fe(lll) at pH~6.
(Kaasalainen et al., 2017).
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Figure 7. Correlation plots of main constituents, a) chloride vs boron; b) chloride vs
sodium; c¢) chloride vs iron; d) temperature vs sodium; e) temperature vs magnesium; b)
temperature vs iron. For explanation of symbols see Figure 5
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5.4 Geothermal steam vent discharges

5.4.1 Steam vent composition, boiling, condensation and gas
separation

Steam vent fluid composition varies within the area with commonly higher concentrations
of COz and H,S in steam vents in Olkelduhals, Reykjadalur whereas Graendalur, Gufudalur
and Hveragerdi have lower CO2 and H>S concentrations, generally (Figure 8). These
variations may be attributed to the concentration variations in the source fluids, with
reservoir fluids at Olkelduhals having higher CO2 and H2S concentrations than in Hveragerdi
(Supplement 3)
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Figure 8. Spatial distribution of a) CO2 and b) H2S concentrations measured in steam
vents.

Olkelduhals steam vents and springs present high CO, concentration. The source of CO>
might be related to magma intrusions at depth in Hrémundartindur active volcanic system,
where the last magma accumulation happened between 1994-1998 (Clifton et al., 2002).
This is also visible on the gas ternary diagrams (Figure 9b and 9c¢) where the steam vent in
the area presents the higher CO2 concentration on the trend gas addition as well as H,S
compared to N2 and Ar.
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Figure 9. a) H20-CO2-H,S gas ternary diagram; b) No-CO.-Ar gas ternary diagram, c)
N2-H,S-Ar gas ternary diagram.

Nitrogen and argon may further be used to trace possible condensation process that may
result in depletion of CO2 and H>S in steam vent fluids. Nitrogen is an atmospheric gas
derived from the meteoric waters, or of magmatic origin, and Ar is noble gas of atmospheric
source used as a conservative species in ratios (Giggenbach, 1986). Nitrogen for the current
survey varies from 5 to 172 mg/kg (0.1 to 10 mmol/kg) with the highest concentration in
GUF-30; however, the same variation is observed in Argon that goes from 0.09 to 5.22
mg/kg (0.002 to 0.2 mmol/kg) as shown in Figure 10. Those variations follow the meteoric
source trend (N2/Ar molar ratio between 38 to 84) from 46 to 80 which indicates a meteoric
source, from no condensation in Olkelduhals towards a partial condensation of steam in
Gufudalur (Figure 10b). The partial condensation in Gufudalur might be caused by (1)
conductive heat loss during ascending, or (2) condensation in cooler groundwater/surface
water. Regarding air contamination, OLK-04, REY-09, GUF-41 and GR/Z-21 show signs
of air contamination as shown in Figure 10a; however, it is lower than compared to previous
studies in the area and they might consider negligible in the dataset since the highest O
concentration found was 3.87 mg/kg (0.1 mmol/kg), as shown in Figure 10a.
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Figure 10. a) N2/Ar molar ratio — oxygen scatter plot; b) N2/Ar molar ratio — nitrogen
scatter plot. For legend symbol refers to Figure 9.

5.4.2 Gas geothermometry

Gas geothermometers are based on the assumed equilibrium between a gas and a mineral
buffer. Gas geothermometers are useful for the estimation of reservoir temperatures in high
temperature geothermal systems and the calibrations of (Arndérsson & Gunnlaugsson, 1985)
are applicable to systems in basaltic host rock like Iceland. The average estimated
temperature from the CO2, H2S, H2 and CO2/H. geothermometers (equations 3 to 7) was
used for Olkelduhals and Reykjadalur areas; however, the possible condensation of the water
vapor in the steam during the upflow was considered for Greendalur, Gufudalur and
Hveragerai.

The results of gas geothermometry are shown in Supplement 4. The gas temperature
estimated shows a lower standard deviation between the geothermometers for Olkelduhals
and Reykjadalur but higher for the south side of Graendalur and Gufudalur, which may be
explained by the change of the gas ratios as a larger fraction of the most soluble gases. The
water vapor condensation increases the gas concentration on the remaining steam phase and
it slightly increases the H2/CO; ratio.

The higher temperatures are found in Olkelduhals with 297°C decreasing towards the south
to 230°C in Gufudalur. Two temperature reference were found through gas geothermometry,
the first one 230-280°C in Hveragerdi, and the second one with a temperature range between
280-300°C in Olkelduhals. Gas geothermometry shows about 40°C difference in
temperatures between both reservoirs but following the same spatial distribution through the
four valleys (Figure 11b).
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Figure 11. a) Scatter plot of temperatures based in H.S geothermometer (Eg. 5) and CO>
geothermometry (Eq. 3); b) Spatial distribution of gas geothermometry for 2020 survey.
For symbol legend refers to Figure 9.

5.5 Comparison with previous studies

28 samples of cold springs, hot springs and acid hot springs, 56 steam vents and 5 boreholes
sampled through different research from 1982 to 2015 are considered as previous data. Those
samples presented characteristics of steam heated waters with Na-HCO3 and alkaline hot
springs around Varma river and Hveragerdi town (Arndrsson & Andrésdottir, 1995;
Arndrsson & Gunnlaugsson, 1985; Kaasalainen & Stefansson, 2012; Stefansson, 2017).
Steam vents were studied for geothermometry on the areas of Olkelduhals, Grandalur,
Gufudalur (Bjérnsson, 2007; Ivarsson et al., 2011a).

The chemical characteristics was mainly compared to previous work carried out before the
major earthquake event on 29 May 2008. A strong earthquake of Richter scale magnitude
6.3 took place 2 km east of the town of Hveragerdi. The earthquake had shallow crustal
ruptures, vertical north-south trending, right-lateral strike-slip fault characteristics, similar
to other historical events in the past (Halldorsson & Sigbjérnsson, 2009). Several changes
related to surface ruptures and geothermal activity were mapped along the area(Eshetu
Gemechu, 2017; Kaasalainen & Stefansson, 2011; Khodayar & Bjornsson, 2014).

Alkaline waters may have disappeared on the study area compared to previous data.
(Kaasalainen & Stefansson, 2011) reported 3 samples: 07-3705, 07-3706 and 07-3707 in
Gufudalur (Hveragerdi down by Laxastigi) with pH of 9.02. The mixing ratio of those
samples corresponded to 54% boiled reservoir water and 42% non-thermal water (Figure 6)
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becoming the only samples with boiled reservoir end member composition. However, during
this study survey all water samples belong to steam heated water with a mixed composition
between condensed steam (cs) and non-thermal waters (ntw). The extinction of alkaline
waters may have been caused by the opening of new fractures followed by the
despresurization of the geothermal reservoir allowing only steam phase reach the surface.

fvarsson et al., (2011b) studied the gas chemistry and geothermometry of the area based on
geochemistry surveys and data available from 1982, 2003, and 2008. The gas composition
maintains the same characteristics throughout the study area (Figure 12). The mentioned
study also found a discrepancy between the CO> and the other geothermometers; thus, the
average between H2S (equation 5) and CO. geothermometer (equation 3) were used to
quantify the reservoir temperature. For comparison purposes, the same average temperature
is used for the current section. The main changes are observed in GRZA-25 (named GRD-
012 in Ivarsson et al., 2011) and GUF-36 (named GUD-002L) with an increase in the
estimated reservoir temperature of 21°C and 10°C respectively. However, GUF-41 (named
GUD-003) cooled down about 27°C. Regardless of not having a comparison of the OLK-04
steam vent, spatial projections based on the gridding method shows an increase of 20°C in
Olkelduhals and decrease of about 20°C in Hveragerdi (Figure 11b). It also inferred a fissure
NW-SE through steam vents REY-15, REY-13, GRA-25 and GUF-36, this signature
appears on the spatial distribution of gas geothermometry shown in Figure 13.
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5.6 Conceptual model

The signatures discussed in the previous section allow for the construction of a conceptual
model; however, further research in isotopic geochemistry is needed to define the fluid origin
and to track inflow and outflow zones. The conceptual model defines the geothermal
reservoir end-members with two primary fluids located in Olkelduhals and Hveragerdi.
Major differences in terms of composition are total CO, and H>S where Olkelduhals is
enriched compared to Hveragerdi, minor differences are found in SiO2, and Cl where
Olkelduhals is slightly enriched.

The heat source of the geothermal activity might be controlled by two volcanic systems. On
the north, Hrémundartindur active volcanic system supplies heat to Olkelduhals where the
estimated temperature is 280-300°C. In the south, Graendalur extinct volcano supplies heat
to Hveragerdi and Gufudalur where the estimated temperature is 230-280°C. The interface
between that two end-members reservoirs are Reykjadalur and Grandalur that are mainly
defined by steam heated waters that are formed by mixing between condensed steam and
nonthermal waters.

Both geothermal areas present secondary fluids on surface as steam heated waters and steam
vents; although no alkaline springs were found during the 2020 survey, previous data shows
boiling hot springs in Hveragerdi by the Varma river. Olkelduhals wells and steam vents
have higher CO2 and H.S concentration than Hveragerdi; however, chloride concentration
is higher in Hveragerdi. As observed by Arndrsson & Andrésdottir, (1995), the higher
chloride concentration may be due to the presence of a seawater source. Regarding steam
vents, partial condensation was observed in Gufudalur, most probably caused by the
conductive cooling of the fluid during ascending. The extent of partial condensation is
reduced throughout Greaendalur and Gufudalur to reach Olkelduhals defined as no
condensation.

Steam-heated waters are distributed over the three valleys. Those fluids contain dissolved
CO2 and SO4 (from H2S) carried by the steam. Figure 14 shows the fluid ascension from the
reservoir to the surface, Olkelduhals presents no water condensation during boiling but
Hveragerdi presents partial water condensation, this process is followed by a mixing process
with non-thermal water mainly from shallow ground water. Although no evidence of
progressive water rock interaction was found, a certain level of water rock interaction in the
surface zone is governed by the CO2 and H>S degassing and the alteration of the hostrock.
This process is highlighted in Olkelduhals but not observed in Hveragerdi. Additionally,
steam heated waters and nonthermal waters in Olkelduhals and Reykjadalur have lower pH
(i.e OLK-03 with pH 5,4 and REY-05 with pH 6,25) due to the degassing and oxidation of
H>S towards SO, and the alteration process of the host rock basalt/hyaloclastite towards
clays like smectite/kaolinite and pyrite (Ludyan, 2020), it results in high concentrations of
H>S and CO: gases and the sulfur oxidation states in most natural geothermal waters
(Kaasalainen & Stefansson, 2011).
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6 Conclusions

Samples from geothermal manifestations in five subareas of the Olkelduhals and Hveragerdi
geothermal fields were analyzed and classified according to their water and gas chemistry.
The temperature of the geothermal reservoir was estimated through gas geothermometry
giving a temperature of 230-280°C in Hveragerdi and 280-300°C in Olkelduhals. This
estimation shows higher temperature than the measured temperature on Hveragerdi
geothermal wells, which range from 215°C to 230°C, and 256°C in the HE-20 geothermal
well of Olkelduhals (Bjérnsson, 2007; Geirsson & Arnorsson, 1995).

The water manifestations are steam heated water with a different degree of mixing between
the condensed steam (sc) and non-thermal waters (ntw) end members, no alkaline hot springs
were found during the 2020 survey although previous data asseverates the presence of boiled
hot springs with a mixing degree of boiled reservoir water (brw) and non-thermal waters.

Gas chemistry indicates that Olkelduhals is enriched in CO2 and H,S compared to
Hveragerdi. Their source may be related to magma intrusions at depth in Hromundartindur
active volcanic system, Nitrogen and N2/Ar ratio shows meteoric air source with no
condensation in Olkelduhals and steam condensation in Hveragerdi during boiling.

The heat source of the geothermal activity might be controlled by two volcanic systems. On
the north Hrémundartindur supplies heat to Olkelduhals; in the south, Greendalur extinct
volcano supplies heat to Hveragerdi and Gufudalur. The interface between the two primary
fluids are Reykjadalur and Greendalur that are mainly defined by steam vents and steam
heated waters. Steam vents on those areas resemble CO2, H>S and Ha concentration on the
middle of both end-member composition that might suggest a shared composition of both
primary fluids.

H>S and CO2 concentration in steam vents kept the same characteristics after the 2008
seismic event although new outflow zones appeared. The seismic event either open and close
fractures or faults rupture and it affected the appearance of geothermal manifestations.
However, the primary and secondary fluids of geothermal areas are rather governed by the
heat source, mixing of condensed steam and non-thermal waters, water-rock interaction in
the surface zone, gas-mineral and gas-gas interaction.
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Table S1.1. The chemical compostion of steam vents in Iceland, units are expresed in

pmol/mol total fluid. (Stefansson et al., 2016a)
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expresed in pumol/mol total fluid. (Stefansson et al., 2016a)
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Table S1.1. (...continuation) The chemical compostion of steam vents in Iceland, units are

Ix



Table S1.2. The chemical compostion of steam vents , units are expresed in pumol/mol total
fluid. (lvarsson et al., 2011b)

Coordinates @
Area ISN93 H.O CO2 H2S H2 CHa4 O N2
East North

RED-001  Reykjadalur 390876 396240 990600 3665 130 450 269 163 7.32
RED-002  Reykjadalur 391584 396348 989900 3410 333 450 112 450 5.29
RED-003  Reykjadalur 391862 396155 990800 3632 67.6 540 112 10.1 5.88
RED-004  Reykjadalur 391594 395380 985200 4362 217 720 112 407 147
RED-005  Reykjadalur 391543 395042 982600 6915 205 135 112 225 5.98
RED-006  Reykjadalur 391122 394788 990200 3812 750 9.00 112 225 13.0
GRD-044  Grendalur 392747 395596 994900 19.8 0 450 101 116 0.05
GRD-010  Greendalur 391906 393381 996100 2614 62.3 540 898 3.38 262
GRD-038  Grendalur 392109 393564 995600 1700 83.4 63.0 1.12 281 3.26
GRD-007  Grendalur 392186 393000 994800 1927 91.3 72.0 337 11.8 154
GRD-008  Grendalur 392750 393554 994300 2032 173 108 561 9.00 17.7
GRD-012  Grendalur 392504 393673 994100 2306 259 99.0 3.37 506 9.00
GRD-014  Grendalur 392564 393915 995300 1449 86.6 180 1.12 106 37.8
GRD-015  Grendalur 392899 393996 993300 2524 150 171 3.37 6.19 9.00
GRD-002  Grendalur 392525 395717 987600 4921 120 27.0 112 6.19 4.80
GRD-003  Greendalur 392578 395971 991300 3436 982 360 1.12 9.00 6.87
GRD-004  Greendalur 392722 396201 990900 3559 124 540 1.12 506 6.77
GUD-001  Gufudalur 392924 390490 995600 1636 385 9.00 1.12 304 15.1
GUD-005  Gufudalur 393140 391052 997700 870 422 9.00 000 225 2.03
GUD-003  Gufudalur 393425 391171 996700 1207 480 9.00 1.12 169 12.0
GUD-002  Gufudalur 393377 391699 996400 1402 67.0 9.00 1.12 281 391
GUD-002L  Gufudalur 393608 392329 997100 1107 51.2 0.00 000 7.31 3.21
GUD-003G ~ Gufudalur 393837 393188 994500 2231 0  18.0 0.00 3.38 0.30
GUD-003H  Gufudalur 393875 393396 994200 2241 115 18.0 3.37 2.81 6.38
GUD-006F  Gufudalur 394194 394485 992900 2864 496 0 000 1.69 1.19
GUD-006G  Gufudalur 394216 394145 994900 1983 845 9.00 1.12 450 4.01

Sample
Label

@ The coordinates were obtained through georeferenced maps from the report using QGIS
v.3.20 software






| comp. of

ica
thermal waters from previous studies

Chem

Supplement 2

Table S2. The chemical compostion of thermal waters in Iceland. (Stefansson et al., 2016a)
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Reservoir flui

Supplement 3

composition.

Table S3. Chemical speciation of the reservoir fluid composition
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@ Temperature estimated based on Quartz geothermometer






Supplement 4: Estimation of
temperature with different gas

geothermometers

Table S4. Gas geothermometers of the study area expressed in °C
Sample Eq. 3: Eq. 5: Eq. 6: Eq. 7: Average  Standard

label CO; H.S H, COy/H> Temp deviation
OLK-04 301 293 297 295 297@ 3
REY-09 263 279 287 298 282 15
GRE-11 272 290 292 301 289@ 12
REY-13 268 281 287 296 283@ 12
REY-15 287 298 292 295 293@
GR/-18 269 279 282 289 280@ 8
GR/-19 269 295 287 296 2820 18
GR/E-20 265 283 283 292 2740 13
GRAE-21 258 283 292 306 2710 18
GR/E-25 271 299 299 311 2850 20
GUF-30 248 270 286 302 259®) 16
GUF-36 266 269 286 295 268® 2
GUF-38 230 258 272 289 2440 20
GUF-41 213 247 272 294 230® 24

(a): Average and standard deviation using the CO», H,S, H,, CO»/H, geothermometers
(Equation 3 to 7).

(b): Average and standard deviation using the CO2 and H2S geothermometers (Equation 3
and 5).
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