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ABSTRACT 

 

Globally, remote sensing technology is widely used in cropland monitoring. Even in Mongolia, 

there is a need to use remote sensing technology to monitor agricultural fields located in a vast 

area. In this study, the relationship between NDVI, NDMI, and LAI calculated using the 2017 

field measurement data and Sentinel 2 satellite data of Ugtaaltsaidam sum cultivation area of 

Central Province was evaluated. Exploratory data analysis and land cover classification 

methods were used to evaluate the descriptive statistics of the collected data using QGIS Semi-

Automatic Plugin. In addition, Python was used in QGIS to calculate correlations. The three 

calculated indices had a positive but very weak correlation with crop yield. Since there was 

yield data but no crop type data, unsupervised classification of land cover was done and  divided 

into four crop types based on which were obtained by the clustering (k-mean) of Sentinel 2 

image. When calculating the correlation between each of these, the three indices were positively 

and weakly correlated for the Crop 1 category. However, the yield of Crop 2 category was 

positively and weakly correlated with NDVI and LAI, but not correlated with NDMI. However, 

other parameters of the soil had a weak negative correlation with the indices. The results were 

opposite to expectations based on the literature review. The results indicate that the crop yield 

recording methodology has to be improved by adding information about the method of crop 

yield estimation, crop type, and more information about the date of harvest. The methods 
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developed and tested in this study will be of great importance for future research on crop yield 

in Mongolia and will hopefully enable enhanced data collection, classification, and evaluation. 

 

Keywords: remote sensing, vegetation indices, correlation, crop yield, Mongolia 
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1. INTRODUCTION 

The World Health Organisation's report from 2021 highlights the importance of food safety in 

upcoming years due to climate change. To support and facilitate the decision-making process 

for various applications in ensuring food security, reliable data on agriculture and crops are 

essential. One crucial step in assisting policy, land use allocation, and environmental concerns 

is crop estimates and monitoring (UN 2021; Muruganantham & Wibowo 2022; Thenkabail 

2010). 

 

The crop agriculture sector in Mongolia is relatively young, with a history of only 60 years 

(Batzorig 2011). Moreover, estimating crop yields, regionally and nationally, is a challenge not 

only for agricultural policy and management but also for the economy and society. Currently, 

the agricultural database of Mongolia does not have information on the yield for single crop 

plots but only general information for the region (Agricultural database 2022). In specific 

locations, but not everywhere, the harvest records are miswritten. For instance, the yield is not 

included or written as a sum for administrative units like in the Ugtaaltsaidam sub-province 

(Agricultural database 2022). In addition, in Mongolia, cropland agriculture is mainly carried 

out by private enterprises. Therefore, the size of the cultivated area, the type of crops, and the 

crop production are not included in the database consistently using the same methodology. It 

therefore becomes problematic for the government to monitor crop yields in a unified manner. 

Furthermore, crop yields are predicted only by traditional methods. 

 

Crop estimates and forecasting may be performed using various techniques. However, satellite 

earth observation is a good option due to its coverage and data type. The modern methods of 

remote sensing technologies allow the exploration of large areas in short time periods which is 

a promising solution for the Mongolian crop sector.  

 

Remote sensing technology has been used intensively in Mongolia since the year 2000. 

Nevertheless, most of the associated studies focus solely on the classification of cultivated and 

uncultivated land. For example, Batzorig (2011) used Landsat satellite data to classify 

cultivated and uncultivated areas in Tuv and Selenge Aimags by classification based on NDVI. 

Another application of remotely sensed data in agriculture explored the possibility of using a 

wide variety of satellites to monitor pastureland and cropland (Tsevengee 2016a). Tsevengee 

(2016b) also examined the possibility of defining the boundaries of cropland using the land 

cover classification method. Studies researching relationships between vegetation indices and 

Mongolia crop yields have, however, not yet been conducted.  

 

The main goal of this research was therefore to assess the application of remotely sensed data 

for crop estimation in Mongolia. The study evaluated selected vegetation indices along with 

field records of crop yield. The objectives were to: 

1. Calculate NDVI, LAI, and NDMI from Sentinel-2 satellite data 

2. Conduct exploratory data analysis 

3. Examine relationships between selected vegetation indexes and field data 

 

1.1 The Mongolian crop agricultural sector 

Mongolia has an area of 1.5 million km2 and is sparsely populated with 1.8 person/km2 

(Mongolian Statistic Information Center 2022). Historically, pastoralism has been the dominant 

sector, and cropland has developed in the last 60 years. The crop agriculture sector in Mongolia 
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is relatively young and small, covering 0.07 % of the total land and accounting for 0.7-1.29 % 

of the gross domestic product. 

 

In 1959, Mongolia launched the first Atar Campaign, a process involving a large number of 

people, aimed at developing the country's economy and improving the food supply of the 

population by plowing the atar land and developing agriculture (Lonjid 1995). Then, during the 

second campaign in 1976, fallow cultivation began. The 1990s began the transition from a 

centrally planned economy to a market economy (Batzorig & Banzragch 2012) with a collapse 

in 2005. Therefore, the 3rd Atar Campaign in 2008 took place to recover and boost the 

agriculturalsector.  

 

As a result of the last Atar Campaign in 2008, the cultivated area increased, but crop yields 

have remained stable (Agricultural database 2022). Figure 1 shows how the cropland area 

rapidly increased within the last three years from 526 thousand hectares to 675.1 thousand 

hectares. The fallow land for agricultural purposes decreased from 304.9 thousand hectares to 

260.6 thousand hectares. Nevertheless, the crop yield remains almost the same.    

 

 

Figure 1. Changes in harvest and cultivated area over the past 20 years. (Source: Agricultural 

database 2022). 

One of the goals of Mongolian policymakers is to increase self-sufficiency in the production of 

strategic crops, such as wheat, barley, potato, and vegetables. Sharav (1999) conducted an 

extensive study where he found that the Mongolian agriculture sector needs to increase 

production to secure food safety significantly. Between 2011 and 2020 there was a need to 

produce 250-300 thousand tons of wheat and 300-350 thousand tons of potatoes and vegetables 

according to the Agricultural Database (2022). This was impossible to reach with the level of 

agriculture at that time. 

 

1.2 Application of remote sensing for agriculture 

Although satellite observations of agricultural monitoring started with the launching of Landsat 

1 in 1972, only in recent years have space agencies, national ministries of agriculture, and 
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worldwide efforts revitalised agricultural remote sensing (EROS n.d.). The current abundance 

of high-resolution optical satellite data offers evaluation opportunities of various geophysical 

and biophysical factors to monitor agricultural systems. The optical imagery can be used for 

precipitation, temperature, evapotranspiration, soil moisture, vegetation health, crop monitoring 

and forecasting. 

 

Over the last several decades, much research has been conducted on the use of remote sensing 

for yield prediction at various levels, from the field to the national level (Mamatkulov et al. 

2021). As a result, these research findings are critical for individual farmers, national 

governments, and international organisations.  

 

The spectral, temporal, and geographical resolutions of satellite pictures vary. The pictures that 

are most typically utilised for regional yield estimate studies still have a coarse resolution and 

a daily revisit period (Duncan et al. 2015). Low-resolution data sources (Table 1) include the 

Advanced Very High-Resolution Radiometer (AVHRR), Satellites Pour l'Observation de la 

Terre or Earth-observing Satellites VeGeTation (SPOT-VGT), MODerate Resolution Imaging 

Spectroradiometer (MODIS), and MEdium Resolution Imaging Spectroradiometer (MERIS) 

(Duncan et al. 2015). 

 

The most significant limitation of low-resolution time-series images in crop monitoring 

assessment is that their spectral reflectance contains mixed pixel information of various surfaces 

and vegetation types (Durgun et al. 2020). This makes it challenging to interpret the signal and 

directly relate a spectral or temporal signature to a specific crop condition. This issue should 

progressively decrease when a time series of images with better spatial resolutions are 

established, for instance by Landsat-8, Landsat 9 and Sentinel-2 (Table 2). However, as Durgun 

et al. (2020) stated, images with high spatial resolutions are limited by our coping with much 

larger data volume and processing time. 
 

Table 1. Satellites sensors for agricultural applications with low resolution. (Adapted from: 

NASA 2022, ESA 2022). 

                                                                                                                               Specific products 
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n
      

   g
reen

n
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  S
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Terra MODIS 
1999 - 

present 250 m, 

500 m, 1 

km 

36 

bands 

Daily, 8-

day, 16-

day, 

monthly, 

yearly 

Global 

with 

gaps 

in the 

tropic 

x x x   x    

Aqua MODIS 
2002 - 

present 

400 – 

14400 

nm 

x x x  x   

Suomi-

NPP 
VIIRS 

2012 - 

present 

375 m, 

750 m 

22 

bands 

Global 

x  x  x   

NOAA-

20 
VIIRS 

400 – 

12500 

nm 

x  x  x   

Soil 

Moisture 

Active 

Passive 

L-band 

radar 
  9 km 

1.41 

Ghz 

3-

hourly, 

daily 

        x      
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Table 2. Satellites sensors for agricultural applications with high resolution. (Adapted from: 

NASA 2022, and ESA 2022). 

                 Specific products 
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Landsat 8 OLI 2013 - 

present 

30 m 9 bands 

430 – 

2290 nm 

16- days Global x    x  

Landsat 9 OLI 2020 - 

present 

30 m  16-days Global x    x  

Sentinel 2 MSI Sentinel 

2A: 2015 - 

present 

 

Sentinel 

2B: 2017 - 

present 

10 m (VNIR), 

20 m (red 

edge, SWIR), 

& 60 m 

(atmospheric 

bands) 

13 bands 

440 – 

2200 nm 

5 days Global x    x  

Sentinel 1 C-

band 

radar 

2014 - 

present 

~10 m Dual 

polarisatio

n: 

VV+VH 

or 

HH+HV 

12-days Global      x 

 

 

Remote sensing is used extensively in statistical algorithms to estimate crop yields (Liang et al. 

2015). Crop production may be predicted empirically using vegetation indices obtained from 

satellite reflectance. For example, Liang et al. (2015)  used the hybrid inversion method to 

calculate the grain leaf area index. They concluded that the most sensitive indices were the 

optimized soil-adjusted vegetation index (OSAVI) r2=0.928 and the modified triangular 

vegetation index (MTVI) r2 = 0.910. Ali et al. (2019) calculated the correlation of grain yields 

using the NDVI, EVI, SAVI, GNDVI, GCI, and SR indices over an area of 11.07 hectares in 

northern Italy over five years. Grain yields were calculated using Landsat satellite data, with a 

64-86 % correlation. 

 

Kern et al. (2018) developed a multi-linear regression model using the example of Hungary to 

predict the 2000-2016 winter wheat, rapeseed, corn, and sunflower yields. The results of the 

study showed that remote sensing data only improved the overall prediction ability of the winter 

wheat model. The results were able to provide simple yet robust models for spatially specific 

yield predictions as well as near-future yield projections.  

 

A similar approach was used by Ganshukh (2020), who used multi-spectral instrument analysis 

of Sentinel 1, Sentinel 2, and SAR data from time-series data to monitor wheat growth in the 

agricultural region of Mongolia to estimate NDVI and NDWI as the most appropriate indices. 

 

Karlson et al. (2020) conducted a study to measure crop yield in 22 agricultural fields in central 

Burkina Faso with varying rainfall. The feasibility of using the Sentinel 2 time series was 

investigated, showing that this satellite data could explain 41-80 % of the variation in crop data 

measurements. 
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Hunt et al. (2019) studied within-field wheat yield variability over a one-year period using 

Sentinel 2 satellite data. A comparison was made with environmental data collected from a total 

of 39 wheat fields. The results showed that, by using data from the Sentinel 2 satellite with a 

resolution of 10 meters, it was possible to accurately map yield changes within the field. 

Another sudy used Sentinel 2 satellite data with two different spatial resolutions of 10 and 20 

meters to estimate wheat yield. Thus, to do the calculation 3 months before harvest was highly 

relevant (Franch et al. 2021). 

 

A leaf area index calculated from Sentinel 2 satellite data was used in a simple wheat yield 

estimation algorithm and compared to 48 field measurements in 2014 and 2015 (Ma et al. 2022). 

It was concluded that the use of remote sensing data in crop land research facilitates the 

estimation of LAI, biomass and yield. 

 

A feasibility assessment of using Sentinel 2 satellite data to monitor wheat field dynamics in 

2018-2019 was conducted in the Ebro Delta growing area, Spain by Soriano Gonzalez et al. 

(2022). For this purpose, a time series was generated using four different vegetation indices 

(NDVI, NDWIMF, NDWIGAO, BSI) derived from 20-m resolution smoothed Sentinel 2 data. 

They concluded that, while the results do not guarantee continuous phenology monitoring for 

all fields, it is possible for wheat fields.  

 

Tuvdendorj et al. (2022) conducted a study using nine types of remote sensing indices to predict 

yields. The aim was to find the best index for the development of the spring wheat yield 

calculation model using correlation and regression methods, and the most suitable indices were 

NDWI, VSDI, and NDVI. The study also found that the flowering period in late June and early 

July were suitable for harvest forecasts. 

 

 

2. METHODS  

2.1 Study area 

Mongolia is an administrative unit with 21 provinces and one capital city. The provinces are 

divided into 330 sub-provinces. 

 

The field site is Ugtaaltsaidam soum (sub-province; 105˚23ˊ51.729˝, 48˚11ˊ07.252˝) in the Tuv 

province in the central part of Mongolia. Figure 2 shows the spatial distribution of crop plots. 

Table 3 summarises the basic physio-geographical characteristics of the study site.  
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Figure 2. Study area: A) Tuv aimag, Mongolia, B) Ugtaaltsaidam soum, Tuv aimag, C) 

Cropland in Ugtaaltsaidam soum. (Source: Mongolian environmental database 2022; ESRI base 

maps 2022). 

      Table 3. Information about the study area. 

Characteristic Description 

Area The total area is 18.5 thousand hectares (Agricultural database 2022). It represents 

12 per cent of the sub-province's total area. 

Climate Dry and cool summers (the average temperature in July is +17.2 degrees), harsh 

winters (the average temperature is -29.5 degrees in January). The average wind 

speed is 18 meters per second, and the total annual precipitation is 504.8 mm 

(Development 2022). 

Soil The typical dark soils and dark coloured mountain forests with mountain meadow-

forest soils are prevalent (Mongolian national classification system) (Mongolian 

environmental database 2022). 

Landscape The fields are located on a flat surface with a slope of 0-6 degrees. 

Natural zone Located in the central zone between forest-steppe and steppe, it is suitable for 

livestock and agriculture (Mongolian environmental database 2022). 

Cultivated 

plants 

Potatoes, vegetables, wheat, and fodder crops are grown alternately using a cropping 

system ( Minister of Economic Development 2022). 

Growing season This area's growing season is 100-110 days (number of days above +5 degrees) in 

summertime (Lonjid 1995). 
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2.2 Data and methodology 

2.2.1 Field data collection 

In a 2017 field survey, soil samples were taken from 99 crop plot parcels, and data on soil 

parameters were collected. In addition, data on the harvest of each year's crop was obtained.  

The data from this field study was collected as part of another research project. Soil samples 

were taken from each crop plot at 0-20 cm. Information about all methods used for soil analyses 

was unfortunately not available, only the results.  

 

The following information was collected and used about soil parameters: 

1. Soil classification: The area had brown soil, brown mountain soil, and brown meadow 

soil. 

2. Soil texture, clay content (Ministry of Construction and Urban Development 2019). 

Clay is one of the important variables influencing the water uptake of plants, thus it 

indirectly influences the crop harvest. The ratio of clay and sand in the soil determines 

its soil texture. According to soil classification in Mongolia, if the soil texture is 0-20%, 

it is sand or sandy soil, 20-60% is loamy soil, and more than 60% is classified as clay 

soil. 

3. Humus content: Humus content is also expressed as a percentage and determined by 

taking soil samples. In Mongolia, the content of humus is 5-10% for black soil, 3-5% 

for dark brown soil, 2-3% for brown soil, and 1.5-2% for light brown soil (Ministry of 

Construction and Urban Development 2019).  

4. Potassium: Potassium supply was expressed in units of mg/kg (Ajindai 1999). It plays 

a major role in plant nutrition. Potassium supply is classified internally as very low (<10 

mg/kg), low (10-15 mg/kg), medium (15-20 mg/kg), and high (<20 mg/kg).  

5. pH: soil pH of 7 is neutral, less than 7 is acidic, and greater than 7 is alkaline. 

 

Crop yield data for the 2017 harvest was also obtained. The unit of measurement was kg per 

hectare. 

 

2.2.2 Imagery acquisition, processing, and software 

Sentinel 2 satellite data is open source, and the spatial resolution is high-resolution (10 meters), 

so it was chosen for use in this study. Sentinel-2 consists of two satellites placed in sun-

synchronous orbit at 180 degrees from each other. It is designed to monitor land surface 

conditions and changes, and its wide bandwidth (290 km) and revisit time will support the 

monitoring of changes in the Earth's surface. The Sentinel-2 satellites contain one Multi-

Spectral Instrument (MSI) with 13 spectral channels in the visible/near-infrared (VNIR, 10 m 

spatial resolution) and short-wave infrared (SWIR, 20 m spatial resolution) spectral ranges. The 

13 bands enables continued interoperability with SPOT-5 and Landsat-8 missions (ESA 2022). 

 

QGIS (Semi-Automatic Classification Plugin) was used to develop survey maps. A Sentinel 2 

satellite image dated August 1, 2017, T035541 was downloaded by writing a data retrieval 

script in Python in QGIS. The downloaded data was pre-processed with the help of the Semi-

Automatic Classification Plugin. After that, the vegetation index (NDVI, LAI, SMI) was 

evaluated for crop yield estimation. The general workflow is showed in Figure 3.  
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Figure 3. Study method flow chart. 

 

2.2.3 Image classification and computing vegetation indices 

Normalised Difference Vegetation Index 

NDVI anomaly data are routinely used to determine crop and pasture vegetation conditions. 

Healthy plants reflect more infrared and green light and absorb more red and blue light.  

Vegetation absorbs a lot of sunlight in the visible red and near-infrared. An attempt was made 

to assess the greenness of the plants with different indices using this property, and the NDVI 

was calculated. The NDVI is between -1 and +1. The closer to +1, the better the vegetation 

cover. It is expressed by the following general formula (NASA Earth  Observatory 2000). 

 

NDVI = (NIR-RED)/(NIR+RED) [1] 

Red- Red 

NIR- Near infrared 

 

Leaf Area Index 

The leaf area index was initially defined as the area of photosynthetic tissue per unit surface 

area (Watson 1947). This index is an essential indicator of the leaf cover and chlorophyll 

content during the growing season. Therefore, LAI is used in plant and evaporation studies, 

light absorption, crop setting, growth phases, and chemical element metabolism. The index has 

also been used in cropland and forestry studies. The most straightforward and most suitable 

substitute for the leaf index is the normalized difference vegetation index (NDVI), which is 

based on the red and near-infrared channels and determined by the following formula (Tewari 

et al. 2003). 

LAI = 0.57*exp (2.33*NDVI) [2] 

LAI- Leaf Area Index 

NDVI- Normalized Difference Vegetation Index 

 

Normalized difference moisture index 

NDMI is a normalized difference moisture index that uses the near infrared and short wave 

infrared  bands to represent moisture (Wilson & Sader 2002). The SWIR band reflects changes 

in plant water content and spongy mesophyll structure in the plant canopy, while NIR 
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reflectance depends on leaf internal structure and leaf dry matter content but not water content. 

By combining NIR with SWIR, the variation due to leaf internal structure and dry matter 

content can be eliminated and the accuracy of obtaining plant water content can be improved. 

The amount of water in the leaf's internal structure largely controls the spectral reflectance in 

the SWIR interval of the electromagnetic spectrum. Thus, SWIR reflectance is negatively 

related to leaf water content. Briefly, NDMI is used to monitor changes in leaf water content 

and was proposed by Gao (1996). 

 

SMI = (NIR-SWIR)/(NIR-SWIR) [3] 

NIR- Near infrared 

SWIR- Short wave infrared 

NDMI has a value of -1 to 1. A negative NDMI value indicates infertile soil, and a value of 0.2-

0.4 indicates water stress (Alberto 2022). 

 

K-Means unsupervised classification  

Information on the type of crops planted in 2017 was not available for each crop plot. Therefore, 

the k-means unsupervised classification method was used to classify by crop type. 

 

An unsupervised land cover classification is performed to obtain initial general information 

about the area under study (GISGeography 2022). Unsupervised classification creates clusters 

based on similar spectral features in an image. Then each cluster is classified without providing 

training samples. Unsupervised classification is performed following the steps of clustering and 

segmentation. K-Means unsupervised classification uses the minimum distance method to 

iteratively cluster pixels into the closest class. At each iteration, the classification values are 

rethought, and the pixels are refined and classified. 

 

Zonal statistical analysis 

After that, the indices calculated by the amount of sub-province were extracted for each crop 

plot using zonal statistics (ESRI 2022a). The zone statistics operation is an operation to 

calculate the statistics of the cell values of the raster (value raster) with different values by zone. 

When calculating statistics by zone, you can either calculate Zone Statistics or Zone Statistics 

by Table. Zonal statistical tables were used in this study. They truncate the pre-computed raster 

values at values with specific boundaries and generate statistics for each zone. 

 

 

3. RESULTS 

3.1 Calculating indices  

Figure 4 shows calculated vegetation indices for the study area. As of August 1, 2017, NDVI 

was -0.59-+0.83, NDMI -0.79-+0.87, and LAI was 0.14-3.9. 

 

As for NDVI, the minimum value of 0.095 indicated the presence of vegetation in those areas, 

and the maximum value of 0.48 indicated the area with the densest vegetation (Figure 5, Table 

4). The mean value was 0.128, indicating that the average vegetation cover of the plots was 

low. The NDVI range was 0.386, which shows that there was a large difference in the index of 

each area. Considering the NDVI value of each area, 30 areas have a value of 0.1-0.12, 25 areas 
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have a value of 0.12-0.14, and 13 areas have a value of 0.14-0.16, or 69% of the total area was 

between 0.1-0.16 as of August 2, 2017. 

 
 

       Figure 4. Indices calculated from Sentinel 2 satellite data. A) NDVI, B) LAI, C) NDMI. 

 

NDMI calculation showed a value of -0.37-0.019, and it was classified as low, medium, and 

high-water stress with moderate canopy cover. NDMI was -0.3- -0.28 in 25 areas, -0.32- -0.3 

in 13 areas, -0.28- -0.26 in 12 areas, and 50 percent of the total area was low canopy cover, dry 

or very low canopy cover, wet. 

 

For the leaf area index, values of 0.711-1.749 were calculated. 64 percent of the total area had 

a value of 0.7-0.8 or lower. The range of LAI was 1.038, which showed that the vegetation 

cover of each field was significantly different.  

 

Figure 5. Scatter plot of NDVI, NDMI and LAI. 
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Table 4. Statistics of indices. 

Index Sum Mean Median 
St 

dev 
Minimum Maximum Range Q1 Q3 IQR 

Missing 

values 

NDVI 14.899 0.152 0.128 0.062 0.095 0.481 0.386 0.115 0.162 0.047 0 

NDMI -27.074 -0.276 -0.285 0.058 -0.374 0.019 0.393 -0.311 -0.255 0.056 0 

LAI 80.567 0.822 0.769 0.147 0.711 1.749 1.038 0.745 0.831 0.086 0 

 

 

3.2 Exploratory Data Analysis of the field data set 

The distribution of crop yield records (Figure 6) was mostly symmetrical in a bell shape, 

indicating a normal distribution. There is an outlier, zero values that can be caused by missing 

values and one value of 122 kg/ha. With a standard deviation of 17.4 kg/ha and interquartile 

range (IQR) 19.6 indicating variation in the crop yield data. Most of the yield fall between 35 

– 65 kg/ha, where 29 plots have yield in the range 55-65 kg/ha and 22 plots in the range 35-45 

kg/ha.  

 

 
 

Figure 6. Distribution and summary statistics of crop yield data. 

 

As an additional parameter to crop yield data, soil texture was analysed in relation to crop yield 

and plotted as a boxplot (Figure 7). The proportion of clay was 15-35%, i.e., sandy, light loamy, 

and medium loamy soil. The mean is 25% and the standard deviation is 4.67%. Most of the 

cultivated land in the study area is loamy or 35%.  
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Figure 7. Boxplot of soil clay data and crop yield. The table on the right shows’ descriptive 

statistics of soil texture. 

The humus content of the soil (Figure 8) ranged from 1.5 to 3.04%, with an average value of 

1.61, indicating brown soil. A standard deviation of 0.39% and an interquartile range (IQR) of 

0.51% indicate variation in soil humus content. Most data values are between 2.3 and 2.9%. 

 

 
 

Figure 8. Boxplot of soil humus data and soil type. The table on the right shows’ descriptive 

statistics of humus of soil. 

The total amount of potassium (Figure 9) was 12-28.9 mg/eq, which classified the fields as low, 

medium, and high potassium supply. A standard deviation of 4.53 mg/eq and an interquartile 
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range (IQR) of 6.9 mg/eq indicate variability in the data. The mean value was 23 mg/eq, 

indicating a high potassium supply, with a maximum of 19–29 mg/eq. 

 

 
Figure 9. Boxplot showing the sum of the potassium data and soil type. The table on the right 

shows’ descriptive statistics of the sum of the absorbed of soil. 

Soil pH values ranged from 6.2 to 8.1, indicating a mix of acidic, alkaline, and neutral soils. 

The average value is 7.18%, and the maximum spread is 6.9-8.0%, indicating that alkaline soils 

are predominant. A standard deviation (St. dev.) of 0.57 % and an interquartile range (IQR) of 

0.9 % indicate variability in soil pH data (Figure 10). 

 

 
Figure 10. Boxplot of soil pH and soil type. The table on the right shows’ descriptive statistics 

of pH of soil. 

3.3 Crop type unsupervised classification 

Unsupervised classification was performed because there was no data on crops planted in 2017 

for 99 fields in the study area. In doing so, by using the Semi-automatic classification plugin of 

the QGIS program, a cluster of crop plots was created and classified into 4 types.  
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0.06-0.32 μm when looking at the electromagnetic wave plot by plotting class clusters as shown 

in Figure 11. 

 

 
 

Figure 11. Wavelength graphic of cropland clusters. 

Out of a total of 99 croplands, 22 were classified as crop 1, 15 as crop 2, 11 as crop 3, and 51 

as crop 4 (Figure 12). 

 

Figure 12. Unsupervised classification of cropland. 
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3.4 Relationship between vegetation indexes and field data 

NDVI, NDMI, and LAI determined by the data of August 1, 2017, were found to be not 

correlated with crop yields (Table 5). When calculating the correlation between the indices 

determined by the Sentinel 2 satellite data and the field research data, it was found that the yield 

of the cultivated area was positively correlated (0.01-0.17), and other soil parameters were 

negatively correlated (-0.21- -0.06). 

 

 

                        Table 5. Correlation between the indexes and field data. 

  Crop yield Humus pH Potassium Clay 

NDVI 0.165633 -0.19611 -0.09473 -0.0896 -0.06788 

SMI 0.013968 -0.175 -0.03714 -0.09812 -0.11603 

LAI 0.172571 -0.20783 -0.10368 -0.11485 -0.06567 

  

Next, the correlation of the indices with the yield of each class classified by type of crop was 

calculated. In this way, the crop yield of crop 1 had a positive and low correlation with the 

indices (0.23-0.35). For class crop 2, NDVI and LAI had a positive and low correlation (0.44-

0.45), and NDMI had a negative and no correlation (-0.01). For crop 3 and 4, NDVI and LAI 

had no correlation (0.01-0.02), and NDMI had no correlation (-0.15- -0.14) (Table 5, Figure 

13-14). 

 

                          Table 6. Correlation between the indexes and crop type’s yield. 

Index 
Crop yield 

Crop 1 Crop 2 Crop3 Crop 4 

NDVI 0.317841 0.441252 0.020638 0.017236 

NDMI 0.235447 -0.015662 -0.144209 -0.152957 

LAI 0.353492 0.446997 0.016155 0.010362 
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Figure 13. Scatterplot Matrix for crop yield (crop_2017), indexes (NDVI, LAI, smi for NDMI), 

and soil data (s_mech for clay content, humus, shin_cap for potassium, pH). 

 

Figure 14. Correlation Matrix for crop yield (crop_2017), indexes (NDVI, LAI, smi for NDMI), 

and soil data (s_mech for clay content, humus, shin_cap for potassium, pH). 
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3.5 Data interpretation  

This study correlated data from the 2017 field survey with indices determined by Sentinel 2 

satellite data. Yield data for each plot was used, but it was not known which crop type it was. 

Therefore, the cultivated crops were classified into four classes by the unsupervised 

classification method. It can be seen from the scatter plot (Figure 13) that calculates the 

relationship between index and yield that there are two types of crops. Correlation calculations 

showed that crop yields and indices were not correlated (Figure 14). 

 

The reason for not obtaining the expected results might be the following: 

 Crop yield records methodology: Durgun et al. (2020) conducted a survey on winter 

wheat yield in 2020. In their study, crop yield was measured by weighing. However, the 

methodology used to collect field yield data for this study was unclear. 

  

 Crop yield records: Another possible issue with field data in this study is the lack of 

sufficient harvest information like crop type or harvest day. For example, Soriano-

González et al. (2022) highlighted the need for detailed harvest information. They 

recommended to record at least the variety of crops, and harvesting and planting time. 

  

 Date of selected satellite data: The date of the selected satellite data may not have been 

appropriate. Because comparing the 2017 NDVI value of the surveyed area for four 

types of crops, some types of crops have high yields on July 15th and some types of 

crops have high yields on August 15th (Figure 15). This was revealed in GEE using 

Sentinel 2, Landsat 8 and MODIS data. 

 

In addition to the reasons mentioned above, crop monitoring studies are often conducted using 

time series analysis. For example, Tuvdendorj et al. (2019) analyzed 18 years of data from June 

to August when determining the spring wheat yield using satellite data. Another example is 

Soriano-González et al. (2022) who calculated NDVI, NDWI, and BSI using Sentinel 2 A/B 

data for the entire 2-year period between 2018 and 2019 for monitoring wheat yields. Therefore, 

it may be possible to use time series analysis to extend this study further. 
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Figure 15. Average NDVI value for estimated crop types. 
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4. DISCUSSION 

The main objective of this study was to evaluate the use of remote sensing data for crop 

estimation in Mongolia. A few remote sensing methodologies were studied to achieve this goal.  

However, the results of the study differed from the results of other researchers. NDVI, NDMI, 

and LAI determined were either not related to yield or the correlation coefficients were 0.16, 

0.06, and 0.17. 

 

For comparison, the results of the following researchers who conducted the same type of 

research were considered. Ali et al. (2019) calculated the correlation of grain yields using the 

NDVI, EVI, SAVI, GNDVI, GCI, and SR indices over an area of 11.07 hectares in northern 

Italy over 5 years. Grain yields were calculated using Landsat satellite data, with a 64-86 % 

correlation. Ma et al. )2022) calculated leaf area index from Sentinel 2 satellite data in a simple 

wheat yield estimation algorithm and compared it to 48 field measurements in 2014 and 2015. 

The results showed that the calculated values were 65-92 % correlated with the measured 

values. The highest correlation (r2=0.55) was given by NDWI, VSDI, and NDVI among the 

nine indexes calculated in a study by Tuvdendorj et al. (2019).  

 

In another example, Gansukh et al. (2020) monitored wheat growth using Sentinel 1 and 

Sentinel 2 satellite data. NDVI and NDWI were calculated between May 2019 and September 

2019. The highest values of NDVI and NDWI were after August 15. Therefore, it would be 

wise to use all the data from the plant growth period or the data after August 15.   

 

Field data could also be improved and re-collected to redo this research. In that case, the type 

of crops planted and the methodology for recording the yield should be clarified. Furthermore, 

it may be necessary to choose the date of the satellite data in accordance with the timing of crop 

growth. 

 

 

5. CONCLUSIONS 

The study was conducted using data from the Ugtaaltsaidam sum field, which is located in the 

central agricultural region of Mongolia. Crop yield and selected soil parameters were evaluated 

with NDVI, NDMI, and LAI. Vegetation indices were estimated from Sentinel 2 satellite data. 

Indices calculated from satellite data on August 1, 2017 showed no to very weak correlation 

with crop yields and soil parameters. 

 

The research did not achieve the expected results. This may be due to the fact that the method 

of recording crop yields was unclear, the type of crop was unknown, and the data dates selected 

were inappropriate. Therefore, in order to further improve this research, following points should 

be considered: 

 Identify the types of crops grown in the field 

 Clarify the methodology for determining the yield of cultivated plants 

 Determine the period of growth and maturity of cultivated plants 

 Conduct time series analysis whenever possible 

 Increase the indices to calculate the dependence  

 

To conclude from the above, it is necessary for Mongolia to improve the cropland database and 

intensify research on cropland monitoring using remote sensing.  
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