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ABSTRACT 
 

Rangelands cover 70% of Mongolia and support forage for livestock and wildlife. Their 

aboveground biomass absorbs carbon and carries out photosynthesis, and the soil stores a large 

amount of carbon. Calculating aboveground biomass and mapping vegetation cover provides 

important background information for the implementation of rangeland management and using 

remote sensing for the biomass monitoring is crucial to save manpower, costs, and time.  In this 

project, the aim was to develop a model to estimate aboveground biomass in the forest-steppe 

of Mongolia. This was done by analysing the relationship between the integrated data obtained 

from a Sentinel-2 Multispectral Instrument dataset, a ASD FieldSpec 4 Standard-Res portable 

spectroradiometer data, DJI Phantom 4 multispectral drone data and field sampling data, using 

the Random Forest algorithm. NDVI and MSAVI calculated from the Sentinel-2 Multispectral 

Instrument dataset and portable spectroradiometer data gave the best correlation with the field 

data and were thus used to develop the Random Forest model. Furthermore band 8 (NIR), band 

4 (Red), band 3 (Green), and band 2 (Blue) of the Sentinel-2 Multispectral Instrument dataset 

were used for the Random Forest model. The Random Forest algorithm randomly selected 20% 

of all sampling data for testing and 80% of all sampling data for training in Python. The 

assessment, built on the Random Forest model results, are: RMSE = 36.3 kg/ha, RMSE% = 

0.165, and R2 = 0.94. I mapped the spatial distribution of predicted aboveground biomass in the 

test area using the Random Forest model. The study results showed that vegetation indices and 

spectral bands derived from the Sentinel-2 Multispectral Instrument dataset and portable 
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spectroradiometer data used in the Random Forest model have good potential for estimating 

aboveground biomass in the forest-steppe zone of Mongolia. 

 

Key words: aboveground biomass, rangeland monitoring, vegetation index, Sentinel-2 MSI, 

spectroradiometer.  
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1. INTRODUCTION 

 

Rangelands cover 54%, or approximately 79.5 million km2, of the terrestrial land in the world 

(ILRI [International Livestock Research Institute] 2021) and supports forage for livestock and 

wildlife. Moreover, about two billion people are directly and indirectly dependent on rangelands 

worldwide (Thornton 2010). The available biomass of rangelands depends on net primary 

productivity (NPP) (Petz et al. 2014). The mean aboveground NPP of global rangelands is 1,017 

Mg C/km2  (Wolf et al. 2021). In rangeland, the aboveground biomass (AGB) absorbs carbon 

and carries out photosynthesis while the soil stores a large amount of carbon and prevents it 

from being released into the air. In recent decades, rangeland productivity has been negatively 

affected by climate change and overgrazing throughout the world (Godde et al. 2020). 

 

The total territory of Mongolia is 1.56 million km2, of which 70% (1.1 million km2) is rangeland 

(ALAMGC [Agency for Land Administration and Management, Geodesy and Cartography] 

2020). The livelihoods of more than 200,000 nomadic herder households are directly dependent 

on the rangelands for livestock production (Dagvadorj et al. 2013). Mongolian rangelands are 

vast and diverse and divided into six natural zones: alpine, mountain taiga, forest steppe, steppe, 

desert steppe, and desert (Gobi) (Yunatov 1976). The forest steppe is the one of the largest 

ecological zones in Mongolia, covering about 14.1% of the country, and provides the main 

natural resource for animal husbandry in Mongolia (Jigjidsuren & Johnson 2003).  
 

Since 1990, the total number of livestock in Mongolia has increased constantly and tripled to 

about 90 million (Mongolian Statistical Information Service 2022). About 58% of rangelands 

are now altered or degraded because of overgrazing and climate change effects as reported in  

a recent report on rangeland health of Mongolia (Densambuu et al. 2018a). Due to the 

degradation, the amount of biomass and vegetation cover has been noticeably reduced. 

Therefore, the rangeland carrying capacity has been exceeded two to three fold, particularly in 

the forest steppe and steppe zone (Densambuu et al. 2018b). For this reason, it is crucial to have 

reliable biomass data throughout Mongolia. Based on accurate biomass estimations, land 

managers and herders could develop rangeland management plans every year. It would allow 

opportunities to use rangelands sustainably and to improve rangeland resilience and 

regenerative capacity. If sustainable management is successfully implemented, rangeland 

quality and forage production would improve and rangeland degradation would decrease 

(Densambuu et al. 2018b).  

 

Since 2015, ALAMGC has been implementing the “Grazing land changes and grazing impact 

photo monitoring” project in cooperation with the Green Gold project, as part of its mandates 

pursuant to the Law on Land of Mongolia to introduce the rangeland use agreements and to 

establish a national monitoring network in every year (Dorj et al. 2021). Land managers conduct 

research on cover of plant functional groups, biomass, rangeland condition, and degradation 

level at 5,128 monitoring plots. In addition, the National Agency of Meteorology and the 

Environmental Monitoring (NAMEM) conducts national rangeland health monitoring at 1,516 

monitoring plots yearly and collects more detailed vegetation data at plant species level 

(NAMEM and MEGDT [Ministry of Environment, Green Development and Tourism] 2015). 

To sum up these two monitoring systems, there are 20-30 monitoring plots in the territory of 

each soum (administrative division in Mongolia) (Dorj et al. 2021). Out of these 6,644 plots, 

about 1,800 monitoring plots are in the forest steppe zone. These rangeland monitoring systems 

are carried out by approximately 600 employees such as land officers and meteorologists, in 

the soums (ALAMGC 2020). These extensive rangeland monitoring systems are important but 
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costly with regard to budget, time and human resources. Therefore, it is also important to study 

large areas by remote sensing and, in particular to measure AGB on rangeland.   

 

Due to the vast size of the Mongolian territory, diverse ecosystems, poor road system and lack 

of specialists, large amounts of labour and expenses are required to conduct nationwide 

monitoring and assessments in the field. Therefore, estimating AGB and mapping vegetation 

cover using remote sensing data is crucial to save manpower, costs, and time, as well as for 

providing important background information for rangeland management. 

 

Remote sensing methods and technology have been developing since the early 1800s 

(Humboldt State University n.d.). At first, cameras were installed in air balloons and later on 

airplanes to gather images from the air. Now advanced techniques and technologies have been 

developed to observe the Earth's surface from space; even other planets and galaxies are being 

studied. These remote sensing methods are very suitable for studying and analysing more 

remote, inaccessible and vast areas. NASA (n.d.) has defined remote sensing as follows:  

 

Remote sensing is the acquiring of information from a distance. NASA observes Earth 

and other planetary bodies via remote sensors on satellites and aircraft that detect, and 

record reflected or emitted energy. Remote sensors, which provide a global perspective 

and a wealth of data about Earth systems, enable data-informed decision making based 

on the current and future state of our planet. 

 

Sensors that use natural energy from the sun are called passive sensors; those that provide their 

own source of energy are called active sensors (Dyring 1973). 

 

A vegetation index (VI) is computed using several spectral bands and a number that quantifies 

vegetation biomass or plant vigour for each pixel in space and aerial multispectral images 

(Geospatial Technology 2019). There are many different methods for analysing vegetation 

indices using spectral reflectance wavelengths obtained from passive remote sensing. Spectral 

reflectance wavelength has been identified as an effective method to sense and study vegetation 

and soil. Results from spectral reflectance measurements have been widely used in the 

agricultural sector, particularly to define land condition and the degree of land degradation, and 

to estimate AGB and crop yield (Scotford & Miller 2005). Measurement of the reflectance 

spectra of natural elements, such as vegetation, water, rock, and soil, allows researchers to 

gather information without requiring samples to be brought to the laboratory (Li et al. 2021). 

Various types of research and analysis have been carried out using vegetation indices (Musande 

et al. 2012).  

 

The Sentinel-2 satellite, which is a widely used open source for remote sensing data, has sensors 

capable of recording reflectance spectra in the multi-channel spectral range (European Space 

Agency n.d.). Portable spectrometry equipment and multispectral drones can be used to obtain 

very high-resolution spectral reflectance data on plant condition and characteristics (Assmann 

et al. 2019). Connecting these data with satellite data from multispectral instruments, analysing 

and comparing them, and then machine-learning the classification, creates a wide range of 

possibilities (Bayaraa & Hirano 2015).  

 

If AGB can be estimated with high accuracy, it will provide the basic data for determining the 

degradation of rangelands, as well as measures for restoration and sustainable use. The main 

goal of this study is therefore to combine remote sensing and field data with the overall aim to 

estimate AGB of rangelands in Mongolia.  
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Specific objectives: 

1. To estimate AGB of the forest-steppe zone in Mongolia using the Random Forest (RF) 

modelling algorithm by integrating field sampling data with portable spectroradiometer,  

multispectral unmanned aerial vehicle (UAV), and Sentinel-2 Multispectral Instrument (MSI) 

datasets 

 

2. To calculate vegetation indices based on the above mentioned three sets of remote sensing 

data and to choose the best correlations between vegetation biomass and vegetation indices. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Study area 

 

The study area is the entire forest-steppe zone of Mongolia which belongs to the main 

administrative unit of 11 provinces (Fig. 1). The total area of this natural zone is 221,000 km2 

or about 14.1% of the total area of Mongolia. About 143,000 km2, or 64.7%, of the forest-steppe 

zone is rangeland. It accounts for about 13% of the total rangeland in Mongolia (ALAMGC 

2020).  

 

The study area is located between 46.42°-50.48° N, and 94.51°-113.15° E in the central-north 

of Mongolia. Semi-arid continental climate prevails in the area, and it has many high mountains 

and ridges, forests, and large lakes and ponds. Large rivers originate in, and flow through the 

region. The amount of precipitation varies due to different land elevations. In the period 1901-

2021, the annual precipitation ranged from 336 to 482 mm and the average annual temperature 

ranged from -0.8°C to -5.6°C in 3 provinces (Arkhangai, Huvsgul, and Bulgan) of the forest-

steppe zone (Climate Change Knowledge Portal 2021). The soil surface starts to freeze from 

mid-October and thaws in the first 10 days of April (Jambaajamts 1989).  

2.2 Field sampling data 

 

Field sampling was conducted in 69 field plots that fully represent the forest-steppe zone from 

12th July to 8th August in 2021 and in 10 field plots from 24th to 31st July in 2022, during the 

peak plant growing season. All field plots were sampled according to monitoring plots of a 

NLMD [National land monitoring network database] at the ALAMGC [Agency for Land 

Administration and Management, Geodesy and Cartography]. When vegetation sampling was 

conducted in the field, measurements with the portable spectroradiometer were also taken and 

aerial images by multispectral UAV for the same periods were acquired.  
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Figure 1. The forest-steppe zone in Mongolia and location of the field plots.  

 

 

2.2.1 Field vegetation survey and vegetation biomass data 

 

The dataset from 2021 includes data on the wet and dry weight of vegetation biomass and 

vegetation cover for all 69 sampling field plot (Appendix I). In addition, there is spectral 

reflectance data measured by the portable spectroradiometer for 39 of the plots (Appendix II). 

In July 2022, measurements were made at 10 sampling field plots. Of these, five plots coincide 

with sampling plots from 2021, while the remaining five plots were selected at unaffected 

locations that fully represent the vegetation and geography of the forest-steppe zone. For these 

10 plots (Appendix III), aerial photographs were taken with a multispectral UAV, and 

measurements were taken with a portable spectroradiometer. Vegetation data was also 

collected. 

 

After taking a reflectance spectrum measurement with the portable spectroradiometer and 

multispectral UAV, wet and dried AGB (gr / m2), vegetation cover (%) (Wikum & Shanholtzer 

1978), and vegetation height (cm) were measured for each plot according to a template as shown 

in Appendix IV, using a 0.5 m x 0.5 m frame (Fig. 2). The harvested grasses were cut at 1 cm 

above ground and the wet biomass was weighed. The harvested plants were dried at 80°C for 

24 hours in the laboratory and then weighed for dried AGB. 
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a) b) 

Figure 2. Vegetation survey in field plots: a) cutting wet biomass; b) vegetation cover 

measured using a 0.5 x 0.5 m frame. (Photos: M. Urtnasan, 30 July 2022). 

 

 

2.2.2 Field spectrometry data and pre-processing 

 

All vegetation reflectance spectra measurements were performed using an ASD FieldSpec 4 

Standard-Res (Analytical Spectral Devices, Boulder, Colorado, USA) portable 

spectroradiometer between 11:00 am and 13:00 pm and only on sunny days without cloud 

cover. The vegetation reflectance spectra measurements were carried out using various 

spectroradiometer ranges and spectrum plates (Table 1).  

 

Table 1. Specification of the ASD FieldSpec 4 Standard-Res portable spectroradiometer. 

(Source: From Malvern Panalytical a Spectris Company n.d). 

No Detectors 
Spectral 

Resolution (nm) 

Spectral sampling 

(bandwidth) (nm) 
Spectral Range (nm) 

Scanning 

Time (ms) 

1 VNIR 3 1.4 350-1000 

100 2 SWIR 1 10 1.1 1001-1800 

3 SWIR 2 10 1.1 1801-2500 

 

Generally, the portable spectroradiometer measurements were taken 1.6 m above the ground 

(Fig. 3) and recorded wavelengths between 350 and 2,500 nm (Table 1), which are the ranges 

of visible (Vis), short-wave infrared (SWIR), and near infrared (NIR) images used for 

identification of land surface elements. Reflectance spectra measurements were processed using 

ViewSpec Pro software. The data of the spectra measurements were further prepared for 

calculation of vegetation indices. 

 

The vegetation indices of NDVI, DVI, MSAVI and EVI were calculated in Microsoft Excel 

365 from the vegetation reflectance spectra measurements using values of the blue band at 

wavelength 490 nm, green band at wavelength 540 nm, red band at wavelength 665 nm, and 

NIR band at wavelength 842 nm.  
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Figure 3. Portable spectroradiometer surveying in the field plots: left) capturing spectral 

measurements. (Photo: B. Batsaikhan, 30 July 2022); middle) portable spectroradiometer 

measurement scheme; right) ASD FieldSpec 4 Standard-Res portable spectroradiometer. 

(Source: From Malvern Panalytical a Spectris Company n.d.).  

 

2.2.3 Multispectral UAV data and image pre-processing 

 

Aerial multispectral images were obtained using a high precision multispectral UAV, the DJI 

Phantom 4 multispectral (P4M) drone. The P4M drone has five multispectral cameras with 

visible, blue, green, red, red edge, and NIR bands. Its spectrum range is 450-840 nm (Table 2).  

 

Table 2. Band wavelengths of the DJI P4M drone cameras. (Source: From Dà-Jiang 

Innovations n.d.).  

 

The aerial multispectral images were taken between 11:00 am and 13:00 pm, on sunny and 

cloud-free days only, and captured an area of 100 x 100 m at 60 meters above ground. The focal 

length of the DJI P4M drone camera was 4.5 mm. The duration of flight missions was around 

15 minutes for each field plot, covering the entire plot with an overlap of 80% between images 

and 70% between lines. The aerial multispectral images were processed using Agisoft software. 

RGB and NDVI raster images for sampling field number 8, built on the DJI P4M drone dataset, 

are shown in Figure 4.  

 

Band 

number 
Description Acronym 

Central wavelength 

(nm) 

Wavelength  

width (nm) 

1 Blue B 450 ±16 32 

2 Green G 560 ±16 32 

3 Red R 650 ±16 32 

4 Red Edge RE 730 ±16 32 

5 Near-Infrared NIR 840 ±16 52 
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Figure 4. Multispectral aerial images and multispectral UAV used for aerial image 

acquisition: top) DJI P4M drone; bottom left) true colour RGB raster image, including all five 

bands; bottom right) NDVI raster image calculated using band 3 and band 5. 
 

The Raster Calculator tool of QGIS 3.26.2 software was used to calculate NDVI, DVI, MSAVI 

and EVI using the DJI P4M drone datasets. When extracting point values of vegetation indices, 

the Zonal Statistic as Table tool of ArcMAP 10.8.1 was used; extracted values are the mean 

value of a circle with a 0.5 m diameter.  

 

2.3 Sentinel-2 Multispectral Instrument dataset and pre-processing  

 

The purpose of the Sentinel-2 satellite is to provide remote sensing data for land use, land cover 

and disaster monitoring (Phiri et al. 2020). Sentinel-2 MSI images are open access and offer 

higher spatial resolution and quicker temporal resolution than other satellites, such as MODIS 

[The Moderate Resolution Imaging Spectroradiometer] and Landsat series satellites. The 

Sentinel-2 MSI datasets are used for regional monitoring of land use and land cover, and for 

studies of land surface conditions and changes. The Sentinel-2 MSI consists of two sensors: 

Sentinel-2A, launched in 2015, and Sentinel-2 launched in 2017. The Sentinel-2 MSI measures 

the Earth's reflected radiance on 13 spectral bands and has high spatial-temporal resolution. The 

pixel size is 10-60 m and the revisit time is five days. The spectrum range is 442-2202 nm, as 

detailed in Table 3 (Europian Space Agency n.d.)  
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Table 3. Spectral bands of the Sentinel-2 MSI. (Source: From European Space Agency n.d.).  

Band 

number 
Description 

S2A S2B 
Spatial 

resolution (m) Central 

wavelength (nm) 

Bandwidth 

(nm) 

Central 

wavelength (nm) 

Bandwidth 

(nm) 

1 Ultra-blue 442.7 20 442.3 20 60 

2 Red 492.7 65 492.3 65 10 

3 Green 559.8 35 558.9 35 10 

4 Blue 664.6 30 664.9 31 10 

5 VNIR 704.1 14 703.8 15 20 

6 VNIR 740.5 14 739.1 13 20 

7 VNIR 782.8 19 779.7 19 20 

8 VNIR 832.8 105 832.9 104 10 

8a VNIR 864.7 21 864.0 21 20 

9 SWIR 945.1 19 943.2 20 60 

10 SWIR 1373.5 29 1376.9 29 60 

11 SWIR 1613.7 90 1610.4 94 20 

12 SWIR 2202.4 174 2185.7 184 20 

 

Sentinel-2 MSI datasets were obtained using JavaScript in the Google Earth Engine (GEE) 

computing platform. The NIR (B08), red (B04), and blue (B02) bands were used for this study. 

Raster images were mapped from the Sentinel-2 MSI dataset, when cloud cover was 15% or 

less. The obtained Sentinel-2 MSI datasets were from dates coinciding with the field sampling, 

or from 12 July to 8 August in 2021 and from between 24 and 31 July in 2022. Raster images 

of NVDI, DVI, MSAVI and EVI from GEE were exported to google drive storage and then 

downloaded to my laptop hard drive. To extract point values of vegetation indices, the Zonal 

Statistic as Table tool of ArcMAP 10.8.1 was used. Mean values from 10 x 10 m pixel raster 

images of vegetation indices were extracted using the Sentinel-2 MSI datasets. 

 

2.4 Vegetation indices 

 

In this study, four vegetation indices were utilized: NDVI, DVI, MSAVI, and EVI (Fig. 5 and 

6). They were calculated according to the formulas shown in Table 4 and processed using the 

GEE computing platform. The dates were the same as for field sampling.   

 

Table 4. Formulas for calculation the spectral vegetation indices.  

Vegetation index Acronym Equation References 

Normalized Difference 

Vegetation Index 
NDVI ( P NIR - PRed ) / ( P NIR + PRed ) 

(Rouse et al. 

1973) 

Difference Vegetation Index DVI ( P NIR  -  PRed ) (Tucker 1979) 

Modified Soil Adjusted 

Vegetation Index 
MSAVI 

( 2 × P NIR + 1 – sqrt ( ( 2 × P NIR + 1) 2 – 8 

× ( P NIR - PRed ) ) ) / 2 
(Qi et al. 1994) 

Enhanced Vegetation Index EVI 
2.5 × ( P NIR - PRed ) / ( P NIR + 6 × PRed – 

7.5 × PBlue  + 1 ) 

(Liu & Huete 

1995) 
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Figure 5. Comparison of vegetation indices calculated from different sources: a) vegetation 

indices calculated from the Sentinel-2 MSI dataset; b) vegetation indices calculated from the 

portable spectroradiometer data; c) vegetation indices calculated from DJI P4M drone datasets. 
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Figure 6. Raster images of vegetation indices for the study area in July and August of 2021, 

calculated using JavaScript in the GEE computing platform: top left) NDVI raster image; top 

right) DVI raster image; bottom left) EVI raster image; bottom right) MSAVI raster image. 

 

2.5 Workflow 

 

The workflow for the whole process of using remote sensing datasets and vegetation sampling 

to develop a model estimation AGB in the forest-steppe zone in Mongolia is shown in Fig. 7.  

 

 

Figure 7. Methodology and work flow for model estimation of above ground biomass (AGB) 

using vegetation sampling and remote sensing data, such as portable spectroradiometer, DJI 

P4M drone, and Sentinel-2 MSI datasets. 
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2.6 Statistical analysis 

 

The statistical analyses were carried out in Python 3.11 using Jupiter Notebook (Anaconda 3) 

and Microsoft Excel 365. The relationship between vegetation indices and vegetation wet 

biomass and vegetation dried biomass during the growth peak period were analysed using 

sampling field plot data.  

 

A linear regression statistical analysis was used to test if vegetation indices significantly 

predicted wet and dry biomass. Linear regression was carried out between vegetation wet 

biomass, dried biomass and four vegetation indices which were calculated from the portable 

spectroradiometer, DJI P4M drone and Sentinel-2 MSI datasets, using the Python scripts in 

Jupiter Notebook software.  

 

2.7 Algorithms for modelling AGB 

 

The RF is an algorithm that was developed by Beiman (Li et al. 2021) and is one of the tree-

based models. The RF algorithm is supervised machine learning that is used for data analysis 

(Ho 1995) and it is now widely used for a variety of applications, such as biomass estimation 

and raster image classification (Erdenebaatar et al. 2021). RF works on randomly selected data 

samples to create a decision tree and assessment classification (Jin et al. 2020). The algorithm  

works according to the following four steps: a) select random samples from a dataset; b) 

construct a decision tree and get prediction results; c) vote among predicted results; d) perform 

a final prediction (Ho 1995).  

 

The RF model with a combination variable of raw bands and NDVI and MSAVI vegetation 

indices derived from Sentinel-2 MSI and portable spectroradiometer was implemented in this 

project using the Scikit-learn package in Python 3.11.  

 

2.8 Model assessment  

 

Root mean square error (RMSE) is one of the most common measures to estimate the accuracy 

of forecasting models. It compares predicted versus observed values while training the 

regression models (Willmott & Matsuura 2005). RMSE is estimated according to Equation 1,  

 

               

(1) 

 

 

where yi represents the field measured and ŷi represents estimated AGB values, and n represents 

the size of the samples in dataset. 

 

RF model estimation of AGB investigates the application of remote sensing-based vegetation 

indices, performing a classification for estimating AGB. The relationship between the wet and 

dry biomass sampling data and the vegetation indices derived from Sentinel-2 MSI 

(Erdenebaatar et al. 2021) and portable spectroradiometer results performed relatively well in 

predicting the AGB. 
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3. RESULTS 

 

3.1 Relationship between biomass and vegetation indices 

 

A total number of 42 regression models were estimated in this study. The top ten correlation 

results were selected from these regression models to develop the RF model estimation of AGB 

(Figure 8-11).  

 

   
 

Figure 8. Relationship between dried biomass and, left) the NDVI of the portable 

spectroradiometer in 2022; middle) the EVI of the portable spectroradiometer in 2021; and 

right) relationship between wet biomass and NDVI of the portable spectroradiometer in 2021. 

 

 

   
 

Figure 9. Relationship between wet biomass and left) the MSAVI of the portable 

spectroradiometer in 2021; middle) the NDVI of the portable spectroradiometer in 2022; and 

right) the MSAVI of the portable spectroradiometer in 2022.   
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Figure 10. Relationship between wet biomass and left) the NDVI of the Sentinel-2 MSI in 

2021; middle) the MSAVI of the Sentinel-2 MSI in 2021; and right) the NDVI of the 

Sentinel-2 MSI in 2022.   
 

   

Figure 11. Left) Relationship between wet biomass and the MSAVI of the Sentinel-2 MSI in 

2022; middle) relationship between NDVI of the Sentinel-2 MSI and NDVI of the portable 

spectroradiometer in 2021; and right) relationship between NDVI of the Sentinel-2 MSI and 

NDVI of the portable spectroradiometer in 2022. 

 

 

The analysis of the relationship between the dried biomass and the vegetation indices showed 

a correlation in the range from -0.0705 to 0.4736 (Table 5). The correlation between the wet 

biomass and vegetation indices was from -0.001 to 0.5068 (Table 6). Most of the relationships 

between vegetation indices from the DJI P4M drone dataset and the vegetation biomass were 

negatively correlated as shown in Table 5 and 6. Therefore, it was considered unnecessary to 

use the DJI P4M drone dataset and vegetation indices derived from the DJI P4M drone in this 

study. 

 

The selected regression models with the best correlation for use to develop the model estimation 

of AGB are marked with an asterisk (*) in Tables 5 and 6. The results are as follows: 1) the 

correlation between dried biomass and NDVI of the portable spectroradiometer in 2022 is 

0.4526, 2) the correlation between dried biomass and EVI of the portable spectroradiometer in 

2022 is 0.4736 (Table 5), 3) the correlation between wet biomass and NDVI of the portable 

spectroradiometer in 2021 is 0.5068, 4) the correlation between wet biomass and MSAVI of 

the portable spectroradiometer in 2021 is 0.4193, 5) the correlation between wet biomass and 

NDVI of the portable spectroradiometer in 2022 is 0.4803, 6) the correlation between wet 

biomass and MSAVI of the portable spectroradiometer in 2022 is 0.4644, 7) the correlation 

between wet biomass and NDVI of the Sentinel-2 MSI in 2021 is 0.4036, 8) the correlation 
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between wet biomass and MSAVI of the Sentinel-2 MSI in 2021 is 0.3292, 9) the correlation 

between wet biomass and NDVI of the Sentinel-2 MSI in 2022 is 0.4179, 10) the correlation 

between wet biomass and MSAVI of the Sentinel-2 MSI in 2022 is 0.4849 (Table 6).  

 

Based on the correlation, I decided to use NDVI and MSAVI calculated from the Sentinel-2 

MSI dataset and NDVI calculated from the portable spectroradiometer data to develop the RF 

model estimation of AGB. Moreover, the following Sentinel-2 MSI spectral bands were used 

to develop the RF model estimation of AGB:  band 2 (blue), band 3 (green), band 4 (red) and 

band 8 (NIR).  

 

Table 5. Relationship between dried biomass and vegetation indices (2021-2022), where db 

represents vegetation dried biomass and y represents related vegetation indices in the regression 

model formula. 

Vegetation indices Regression model Correlation R2  

Vegetation indices of portable spectroradiometer (2021) 

NDVI   0.1998 0.0399 

EVI  0.1841 0.0339 

MSAVI  0.1921 0.0369 

DVI  0.1752 0.0307 

Vegetation indices of portable spectroradiometer (2022) 

NDVI y = 99.12 × db + 25.61 0.4526* 0.2048 

EVI y = 50.84 × db + 70.47 0.4736* 0.2243 

MSAVI  0.3808 0.1450 

DVI  0.2933 0.0860 

Vegetation indices of multispectral UAV (2022) 

NDVI  -0.0705 0.0050 

EVI  -0.2630 0.0692 

MSAVI  0.3249 0.1056 

DVI  0.4119 0.1697 

Vegetation indices of Sentinel-2 MSI (2021) 

NDVI  0.147 0.0217 

EVI  0.026 0.0007 

MSAVI  0.0402 0.0016 

DVI  0.044 0.0019 

Vegetation indices of Sentinel-2 MSI (2022) 

NDVI  0.14 0.0196 

EVI  0.1967 0.0387 

MSAVI  0.1309 0.0171 

DVI  0.293 0.0858 
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Table 6. Relationship between vegetation wet biomass and vegetation indices (2021-2022), 

where wb represents vegetation wet biomass and y represents related vegetation indices in the 

regression model formula. 

Vegetation indices Regression model Correlation R2 

Vegetation indices of portable spectroradiometer (2021) 

NDVI y = 195.76 × wb + 17.79 0.5068* 0.2568 

EVI  0.4189 0.1755 

MSAVI y = 251.53 × wb + 43.55 0.4193* 0.1758 

DVI  0.3469 0.1203 

Vegetation indices of portable spectroradiometer (2022) 

NDVI y = 425.79 × wb + -98.54 0.4803* 0.2307 

EVI  0.4716 0.2224 

MSAVI y = 210.77 × wb + 108.7 0.4644* 0.2157 

DVI  0.4422 0.1955 

Vegetation indices of multispectral UAV (2022) 

NDVI  -0.2747 0.0755 

EVI  -0.0928 0.0086 

MSAVI  -0.0010 0.0000 

DVI  -0.1270 0.0161 

Vegetation indices of Sentinel-2 MSI (2021) 

NDVI y = 90.09 × wb + 73.39 0.4036* 0.1629 

EVI  0.1648 0.0272 

MSAVI y = 109.36 × wb + 46.92 0.3292* 0.1084 

DVI  0.2096 0.044 

Vegetation indices of Sentinel-2 MSI (2022) 

NDVI y = 120.22 × wb + 188.58 0.4179* 0.3113 

EVI  0.3326 0.1106 

MSAVI y = 271.07 × wb + 84.53 0.4849* 0.2351 

DVI  0.3849 0.1482 

 

Three kinds of NDVI calculated from different datasets were compared and analysed. When 

analysing the data collected in 2022, the NDVI calculated from the DJI P4M drone had a 

slightly negative correlation with the NDVI calculated from the Sentinel-2 MSI and the portable 

spectroradiometer (Table 7). But when comparing the NDVI calculated from the Sentinel-2 

MSI and the NDVI calculated from the portable spectroradiometer, there was a high correlation 

for both years (Table 8). 
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Table 7. Relationship between NDVI calculated from different datasets in 2022, where 

NDVIDRO represents NDVI of DJI P4M drone, NDVISEN represents NDVI of Sentinel-2 and 

NDVISRM represents NDVI of the portable spectroradiometer in regression model formula. 

Relationship 
NDVI of Sentinel-2 MSI (2022) NDVI of portable spectroradiometer (2022) 

Regression model Correlation R2 Regression model Correlation R2 

NDVI of DJI 

P4M drone 

(2022) 

NDVIDRO = - 0.55 

× NDVISEN + 0.4 
- 0.3632 0.132 

NDVIDRO = - 0.04 × 

NDVISRM + 0.78 
- 0.092 0.009 

 

Table 8. Relationship between NDVI calculated from different datasets in 2021-2022, where 

NDVISEN represents NDVI of Sentinel-2 and NDVISRM represents NDVI of portable 

spectroradiometer in regression model formula. 

Relationship 

NDVI of portable spectroradiometer 

(2021) 

NDVI of portable spectroradiometer 

(2022) 

Regression model Correlation R2 Regression model Correlation R2 

NDVI of 

Sentinel-2 

MSI (2021) 

NDVISEN = 0.72 × 

NDVISRM + 0.06 
0.8165 0.667 - - - 

NDVI of 

Sentinel-2 

MSI (2022) 

- - - 
NDVISEN = 0.47 × 

NDVISRM + 0.61 
0.6802 0.463 

 

 

3.2 Development and validation of estimation models 

 

In this study, I selected the highest correlation combination variable with vegetation wet 

biomass and NDVI and MSAVI calculated from the Sentinel-2 MSI dataset and NDVI 

calculated from the portable spectroradiometer data, and band 8 (NIR), band 4 (Red), band 3 

(Green), and band 2 (Blue) of the Sentinel-2 MSI. RF model estimation of AGB was estimated 

using the Scikit-learn package in Jupiter Notebook (Anaconda 3) software. 

 

The RF model estimation of AGB randomly utilized 20% of the sampling data for testing the 

algorithm and 80% for training the algorithm. The results are shown in Figure 12 (a). Results 

of verification and assessment RF model are shown in Figure 12 (b, c) and Table 9. 
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a)  

b)  

c)  

Figure 12. Comparing predicted and observed values of AGB using the RF model: a) 

residuals for RF model estimation of AGB; b) comparison between observed AGB of the 

sampling data and predicted AGB of testing sampling data; c) prediction error for the RF 

model estimation of AGB. 
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Table 9. RMSE of RF model estimation of AGB. 

Model 
RF model 

RMSE kg/ha R2 RMSE % 

Raw bands, vegetation 

indices 
36.3 0.94 0.165 

 

3.3 Spatial distribution of biomass in the forest-steppe of Mongolia 

 

To minimise time for processing and downloading from the GEE computing platform, a smaller 

test area than the study area was chosen for spatial distribution mapping. The area is about 

10,000 ha. The estimated AGB using the RF model for each pixel of the selected area and the 

AGB spatial distribution map are shown in Figure 13. 

 

 

Figure 13. Sample predicted AGB raster images using the RF model for the test area: a) 

location of the test area, b) natural colour raster images of Sentinel-2 MSI, c) Raster image of 

the predicted AGB. 

 

 

4. DISCUSSION 

 

Because there exist so many vegetation indices derived from spectral measurement of optical 

sensors, it was important to find the most appropriate vegetation indices for estimating AGB in 

the forest-steppe zone of Mongolian rangelands. This is because the spectral reflectance 

characteristics of plants are related to vegetation biomass, soil moisture, species, and plant 

growth stage (Roy 1989). Jin et al. 2014 studied NDVI and their approach is widely used for 

estimating AGB, while MSAVI is used for estimating AGB of rangeland with low vegetation 

cover. Some related studies have had varying success using optical sensors with different spatial 

and spectral resolutions to estimate AGB, though the accuracy of these models has been limited 

(Lu 2006). In this study, NDVI and MSAVI were used to develop the RF model estimation of 

AGB and the results met the objectives of the study. Therefore, the developed RF model for 
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estimation of AGB can be introduced in Mongolia, and the machine learning algorithm can be 

enriched with more sample data to further improve it. 

 

Jin et al. (2014) calculated the correlation between NDVI, DVI, MSAVI and other vegetation 

indices derived from a MODIS dataset. Their correlations were 0.6-0.7 for Xilingol, Inner 

Mongolia in Northern China. In this study, the correlation was lower at 0.3293-0.5068 (Tables 

5 and 6). 

 

Noteworthy results from this study are that correlation between vegetation indices derived from 

the DJI P4M drone dataset and vegetation biomass was mostly negative. The NDVI derived 

from the DJI P4M drone was also negatively related to the NDVI derived from the Sentinel-2 

MSI and portable spectroradiometer. These results did not meet expectations. Although the DJI 

P4M drone has a very high resolution, there is a need to investigate the reason for the negative 

correlation with vegetation biomass and NDVI derived from other sources. The reason for this 

is likely to be that the area used to extract the mean value of wavelengths from DJI P4M drone 

bands was the same as the area measured by the portable spectroradiometer, i.e. 0.5 x 0.5 m. It 

might be a good idea to enlarge the size of this area and to extract the mean value of wavelengths 

from a larger area in a future study.  

 

The result of the analysis using the DJI P4M drone dataset from 2022 was unsatisfactory. 

Further research is needed to develop RF model estimation of AGB using multispectral UAV 

datasets such as aerial multispectral raster images acquired by DJI P4M drones. 

 

The evaluated precision of the RF model estimation of AGB was good as shown in Table 9 and 

Figure 12. Furthermore, the results of the predicted AGB using the RF model, shown in Table 

9, indicate a good fit using RF algorithm modelling accuracy to estimate AGB in the forest-

steppe. In “The methods of monitoring rangeland using remote sensing” from ALAMGC, 

modelling accuracy of this method was said to be R2 = 0.95.  

 

 

5. CONCLUSIONS 

 

This study used an RF machine learning algorithm with multispectral bands (NIR, red, green 

and blue), vegetation indices (NDVI, DVI, MSAVI and EVI) derived from Sentinel-2 MSI, DJI 

P4M drone and a portable spectroradiometer, and vegetation biomass collected from field plots. 

Above ground biomass (AGB) was estimated using the developed RF model in a test area and 

the predicted and observed values of AGB were then compared with sampling data. The results 

showed that vegetation indices and spectral bands derived from the Sentinel-2 MSI and the 

portable spectroradiometer have good potential in RF model estimation of AGB in the forest-

steppe zone of Mongolian rangelands.  

 

In this study, it was ensured that the timing of the field plot sampling and the acquisition dates 

for the remote sensing data coincided as much as possible. This approach is believed to have 

improved the sensitivity of the remote sensing dataset to reflect AGB in rangeland. This is 

because remote sensed spectral values can change depending on weather conditions. Therefore, 

it is important that remote sensing data received from different sources are close in time. 

 

Because the machine learning algorithm was used to develop the model estimation AGB, the 

more sampling data with spectral measurements can be added and the modelling accuracy can 

be further improved. 
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The developed model estimation of AGB can save manpower, time and reduce costs for 

rangeland monitoring in the forest-steppe zone of Mongolia. Using the basic methodology of 

the developed RF model estimation of AGB, it is quite possible to develop and introduce 

estimation AGB modelling in other natural zones in Mongolia, such as steppe, desert steppe 

(Gobi), and desert. 
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APPENDICES 

 

Appendix I. Sentinel-2 MSI sampling data of 69 field plots in 2021. 

 

No B2 B3 B4 B8 NDVI DVI MSAVI EVI 
Wet 

biomass 

Dried 

biomass 

1 454.5 760 635 2555 0.6028 0.1899 0.7521 0.3677 161.71 107.42 

2 443.5 757.5 615 2627 0.6196 0.1974 0.7651 0.3848 194.2 89.91 

3 509 803 682 2544 0.5064 0.1707 0.6723 0.3309 126.6 36 

4 485 780 648 2596 0.5131 0.1728 0.6781 0.3359 54.4 25 

5 458 756 573 2664 0.5531 0.1856 0.7122 0.3609 132 31.4 

6 306 655 353 3642 0.8151 0.3271 0.8981 0.5738 61.7 23 

7 308 590 386 3196 0.7388 0.2716 0.8498 0.4707 136.6 46 

8 352 602 436 2670 0.6476 0.2099 0.7861 0.3928 126 47.5 

9 338 619 430 2656 0.6553 0.2103 0.7918 0.3982 78.1 29 

10 550 828 855 2542 0.4603 0.1627 0.6304 0.2932 239.8 92 

11 548 814 824 2592 0.4904 0.1705 0.6581 0.3112 215.8 90 

12 511 768 698 2446 0.5232 0.1668 0.6869 0.3235 130.7 52 

13 511 762 719 2622 0.5491 0.1843 0.7089 0.3472 169.8 70.1 

14 587 848 751 2840 0.5403 0.1976 0.7015 0.3752 115.3 62 

15 609 873 785 2820 0.5246 0.1938 0.6882 0.3649 152.8 83 

16 717 1178 1572 2744 0.2627 0.1062 0.4161 0.1648 53.25 38 

17 726 1198 1562 2686 0.2651 0.1068 0.4191 0.1665 87.13 67 

18 510 807 808 2312 0.4515 0.1330 0.6220 0.2557 96.21 68 

19 697 1212 1360 3204 0.3961 0.1734 0.5674 0.2751 159.25 96 

20 838 1334 1656 3182 0.3116 0.1412 0.4751 0.2178 116.13 62 

21 821 1396 1694 3222 0.2900 0.1356 0.4496 0.2024 92.26 53 

22 717 1220 1410 3212 0.3839 0.1732 0.5547 0.2719 147.25 86 

23 378 620 493 2490 0.5638 0.1801 0.7210 0.3418 110 92 

24 406 659 592 2208 0.4735 0.1468 0.6427 0.2775 157.1 93.5 

25 861.5 1264 1394 2687 0.2979 0.1183 0.4590 0.2090 225.18 86 

26 485 804.5 731 2631 0.5363 0.1746 0.6982 0.3289 313.2 144.5 

27 512 797.5 786.5 2483 0.4888 0.1572 0.6566 0.2920 183.6 82.5 

28 491 800 682 2644 0.5999 0.2069 0.7499 0.3920 200.5 104.8 

29 526 839 767 2790 0.5710 0.2063 0.7269 0.3852 112.6 52 

30 568 905 803 2778 0.5615 0.2104 0.7191 0.3901 108.8 52.5 

31 586 925 829 2684 0.5421 0.1958 0.7030 0.3666 117.5 55.2 

32 580 915 1070 2588 0.4061 0.1463 0.5775 0.2531 227.63 87 

33 749.5 1157 1397 2594 0.3050 0.1204 0.4673 0.1962 87 59 

34 786.5 1210 1457 2734 0.3168 0.1302 0.4811 0.2090 79 62.3 

35 734.5 1115 1337 2592 0.3285 0.1270 0.4945 0.2119 74.9 48.5 

36 720 1058 1256 2614 0.3272 0.1218 0.4931 0.2084 63.4 34.5 

37 747 1066 1256 2598 0.3470 0.1284 0.5152 0.2260 72.5 68.2 

38 697 1038 1208 2542 0.3696 0.1372 0.5397 0.2383 68.6 33 

39 689 1011 1338 2226 0.2626 0.0926 0.4159 0.1549 45.5 30.5 

40 390 690 547 2580 0.5775 0.1859 0.7321 0.3256 77 25 

41 262 496 339 2666 0.6883 0.2146 0.8153 0.3790 65 21 

42 601 929 1086 2458 0.3498 0.1274 0.5183 0.2089 82 38 
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43 544.5 843.5 871 2516 0.4339 0.1524 0.6052 0.2764 81 42 

44 399.5 650.5 574.5 2346 0.5928 0.1840 0.7443 0.3225 71 33 

45 685 993 1100 2618 0.3613 0.1394 0.5308 0.2389 143.6 61 

46 443 678 609 2302 0.4918 0.1521 0.6593 0.2920 141 59 

47 529 818 780 2600 0.4999 0.1711 0.6666 0.3173 143.6 61 

48 681 909 966 2548 0.4133 0.1495 0.5849 0.2740 169.8 70.1 

49 653 1021 1204 2412 0.3019 0.1064 0.4638 0.1844 43.1 30 

50 659 1056 1242 2536 0.3330 0.1240 0.4995 0.2075 88 65 

51 608 990 1178 2596 0.3577 0.1312 0.5269 0.2187 86 60 

52 674 1088 1306 2518 0.2993 0.1080 0.4607 0.1789 95 59 

53 398 804 755 2690 0.5558 0.1922 0.7145 0.3462 94 63 

54 400 775 762 2666 0.5491 0.1890 0.7089 0.3430 90 62 

55 812 1360 1538 3022 0.3268 0.1408 0.4926 0.2276 91 62.9 

56 452 828 836 2612 0.5151 0.1776 0.6799 0.3191 93 63.5 

57 412 693 590 2468 0.4937 0.1694 0.6610 0.3088 157.1 93.5 

58 519 785.5 740.5 2334 0.4411 0.1373 0.6121 0.2649 33 18 

59 470.5 758 694.5 2495.5 0.5331 0.1586 0.6954 0.3069 34 17.5 

60 622.5 922.5 1021 2291 0.3747 0.1249 0.5451 0.2278 140.5 49 

61 561 875 741 2784 0.5963 0.2195 0.7471 0.4157 101 67.5 

62 743.5 1082.5 1258 2501 0.3676 0.1272 0.5376 0.2277 75 45 

63 501.5 816 705 3271 0.6512 0.2584 0.7887 0.4713 77 61 

64 559 912 1102 2414 0.3662 0.1248 0.5360 0.2135 65.3 40.5 

65 470.5 766 638 2646 0.6053 0.1957 0.7541 0.3797 190 50 

66 695 1010 1196 2478 0.3501 0.1284 0.5185 0.2226 55.3 35.5 

67 738 1036 1154 2702 0.3963 0.1502 0.5676 0.2700 40.5 30.1 

68 613 933 965 2850 0.5091 0.1923 0.6747 0.3480 71 34 

69 466.5 760 644 2594 0.6052 0.1913 0.7540 0.3742 189 70 

 

 

Appendix II. Portable spectroradiometer sampling data of 39 field plots in 2021. 

 

No Blue Green Red NIR NDVI DVI MSAVI EVI 
Wet 

biomass 

Dried 

biomass 

1 0.0268 0.0649 0.0377 0.2677 0.7530 0.2300 0.4080 0.4445 161.71 107.42 

2 0.0249 0.0638 0.0345 0.2666 0.7707 0.2321 0.4151 0.4507 194.2 89.91 

3 0.0485 0.0959 0.0725 0.2904 0.6003 0.2179 0.3557 0.3999 126.6 36 

4 0.0466 0.0821 0.0664 0.3459 0.6781 0.2795 0.4503 0.5011 54.4 25 

5 0.0390 0.0607 0.0557 0.3122 0.6971 0.2565 0.4291 0.4736 132 31.4 

6 0.0331 0.0703 0.0450 0.4247 0.8083 0.3797 0.6154 0.6561 61.7 23 

7 0.0151 0.0666 0.0176 0.1586 0.7998 0.1409 0.2689 0.3061 136.6 46 

8 0.0230 0.0695 0.0352 0.2895 0.7834 0.2544 0.4510 0.4789 126 47.5 

9 0.0230 0.0807 0.0330 0.1802 0.6901 0.1472 0.2699 0.3051 78.1 29 

10 0.0432 0.0790 0.0598 0.3133 0.6796 0.2536 0.4205 0.4703 239.8 92 

11 0.0349 0.0846 0.0496 0.3415 0.7462 0.2919 0.4889 0.5298 215.8 90 

12 0.0308 0.0779 0.0474 0.3397 0.7553 0.2923 0.4927 0.5249 130.7 52 

13 0.0565 0.0792 0.0802 0.2968 0.5747 0.2167 0.3478 0.4001 169.8 70.1 

14 0.0510 0.0815 0.0787 0.3210 0.6063 0.2423 0.3858 0.4296 115.3 62 
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15 0.0516 0.1082 0.0884 0.3102 0.5565 0.2218 0.3489 0.3814 152.8 83 

16 0.0808 0.1092 0.1625 0.3117 0.3145 0.1491 0.2112 0.2219 53.25 38 

17 0.0825 0.0968 0.1387 0.3233 0.3996 0.1846 0.2678 0.3003 87.13 67 

18 0.0825 0.1150 0.1387 0.3233 0.3996 0.1846 0.2678 0.3003 96.21 68 

19 0.0596 0.1047 0.1041 0.3774 0.5675 0.2732 0.4048 0.4393 159.25 96 

20 0.1025 0.1166 0.1872 0.4277 0.3911 0.2405 0.3115 0.3373 116.13 62 

21 0.0507 0.0834 0.0891 0.2322 0.4454 0.1431 0.2323 0.2581 92.26 53 

22 0.0776 0.0925 0.1362 0.3347 0.4216 0.1985 0.2873 0.3162 147.25 86 

23 0.0516 0.0748 0.0806 0.3636 0.6372 0.2830 0.4397 0.4847 110 92 

24 0.0469 0.0820 0.0790 0.2888 0.5703 0.2097 0.3386 0.3716 157.1 93.5 

25 0.0302 0.0320 0.0434 0.2719 0.7247 0.2285 0.3993 0.4374 225.18 86 

26 0.0357 0.0499 0.0563 0.3010 0.6851 0.2448 0.4110 0.4463 313.2 144.5 

27 0.0341 0.0472 0.0506 0.2842 0.6976 0.2336 0.3997 0.4384 183.6 82.5 

28 0.0379 0.0771 0.0557 0.2607 0.6479 0.2050 0.3500 0.3909 200.5 104.8 

29 0.0494 0.0685 0.0723 0.2898 0.6009 0.2176 0.3555 0.4021 112.6 52 

30 0.0423 0.0607 0.0611 0.3030 0.6643 0.2418 0.4016 0.4470 108.8 52.5 

31 0.0460 0.0850 0.0652 0.3417 0.6794 0.2764 0.4473 0.4978 117.5 55.2 

32 0.0514 0.0834 0.0785 0.3001 0.5855 0.2217 0.3564 0.4000 227.63 87 

33 0.0540 0.0819 0.0988 0.2208 0.3815 0.1219 0.1957 0.2164 87 59 

34 0.0543 0.1159 0.0983 0.2205 0.3833 0.1222 0.1963 0.2177 79 62.3 

35 0.0803 0.1166 0.1458 0.2657 0.2913 0.1199 0.1770 0.1948 74.9 48.5 

36 0.0852 0.1057 0.1223 0.2978 0.4178 0.1755 0.2635 0.3151 63.4 34.5 

37 0.0775 0.1537 0.1119 0.2472 0.3767 0.1353 0.2108 0.2528 72.5 68.2 

38 0.0898 0.0764 0.1474 0.2955 0.3344 0.1481 0.2153 0.2459 68.6 33 

39 0.0838 0.1155 0.1237 0.2625 0.3596 0.1389 0.2114 0.2523 45.5 30.5 

 

 

Appendix III. Portable spectroradiometer sampling data of 10s field plots in 2022. 

 

No NIR RED BLUE NDVI DVI MSAVI EVI 
Wet 

biomass 

Dried 

biomass 

1 0.3067 0.0551 0.0368 0.6952 0.2515 0.4224 0.4619 188.53 81.63 

2 0.3060 0.0552 0.0368 0.6944 0.2508 0.4212 0.4607 163.72 104.57 

3 0.4019 0.0535 0.0360 0.7649 0.3483 0.5603 0.5992 186.05 134.23 

4 0.5063 0.0421 0.0334 0.8463 0.4641 0.7159 0.7691 379.66 108.92 

5 0.3053 0.0553 0.0368 0.6935 0.2501 0.4201 0.4594 292.19 85.49 

6 0.3124 0.0567 0.0378 0.6928 0.2557 0.4270 0.4670 136.05 93.12 

7 0.4913 0.0504 0.0341 0.8141 0.4410 0.6738 0.7169 207.62 118.23 

8 0.3855 0.0554 0.0441 0.7489 0.3302 0.5337 0.5950 255.39 81.63 

9 0.5222 0.0297 0.0222 0.8922 0.4925 0.7773 0.8027 248.20 97.79 

10 0.6111 0.0413 0.0339 0.8734 0.5698 0.8030 0.8875 242.49 115.32 
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Appendix IV. Template of record for plant researching. 

Plant record sheet № 

 

Province name: __________________________ Soum name: __________________________ 

Professional body name: _______________________________________________________ 

Date of record: _____ year _____ month _____ day 

Monitoring plot number: ____________________ Sampling number: ____________________ 

Geographic name: ____________________________________________________________  

Characteristic of soil: __________________________________________________________ 

Surface:   А. Aspect _______________ degree of slope _______________ 

    B. Flat, convex, concave, side of the mountain and mountain ridge 

Geographical coordinates: N ____________________, E _____________________, H ______ 

Type name: _________________________________________________________________ 

Vegetation cover: weeds ____%, bare_____%, rock ____%, litter _____%, shrub ____%, 

gravel _____%, sand _____%, other _____%,  

Wet biomass ______________, dried biomass ________________, 

Area of field sampling _______ m2 / cm2, summer condition ___________________________,  

Animal effect _______________________________________________________________. 

 

№ Name of plant Cover, % Height, cm 
Stages of plant 

growth 
Notes 

      

      

      

 

 

Number of species 

_________ in 1m2,  

________ in 100m2 
 

Community____________________ 

 

Grass______%, legume ______%, sedge ______%, forb 

______%, artemisia _____%, onion _____%, invader _____%. 

 

Field sampling condition /to explain/ 

Condition type 
Field cover, 

% 
Distribution 

Size /diameter, height 

and depth/ 
Notes 

     

     

     

 

Degree of effect /to explain/ 

Monitoring 

plot number 

Degree of effect /severity, moderate, weak/ 

Abiotic 
Pest 

rodent 
Polluted Degraded 

Sand 

migration 

Water 

erosion 
Gully 

        

        

        

 


