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ABSTRACT 

 

The Central Asian country of Mongolia is severely affected by desertification and land 

degradation. One of the main drivers of degradation is dirt road expansion, often informal and 

unplanned nature. A better understanding of the geographical factors that exacerbate dirt road 

expansion is helpful to develop management strategies to reduce dirt road-related land 

degradation. The aim of this study was to investigate the relationship between dirt roads and 

geographical factors at the local level using a case study area in the central northern province 

of Selenge. The study utilised geostatistical techniques to explore a total of 17 variables 

representing key natural and human characteristics. A total length of 2,998 km of dirt roads was 

determined in the case study area through satellite image analysis. Several dirt road clusters 

identified during the analysis indicated that dirt roads contribute significantly to land 

degradation in the study area. Ordinary Least Squares (OLS) and Geographically Weighted 

Regression (GWR) models showed some weaknesses in their capabilities. Multicollinearity was 

identified as one of the major challenges in such a local level analysis. The OLS model could 

explain up to 7% of the dirt road expansion in the study area, whereas the GWR model could 

explain 13%. The modelling results suggest that the effect of geographical factors on dirt road 

expansion varied throughout the study area. Rural settlement centres (soum and bag centre) and 

terrain slopes could influence an increase in dirt road density at the local level. Overall spatial 

analysis could identify some overall patterns in the data that may be valuable for identifying 
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the most pressing geographic areas and their specific characteristics that require addressing 

through specific planning and management approaches. 

 

Key words: Geographically Weighted Regression, off-road driving, dirt road density, 

Geographic Information Systems, Mongolia   
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1. INTRODUCTION 

 

Inappropriate management and overutilization of land resources are commonly considered the 

origin of land degradation. Vehicle off-roading is one of the direct impacts which lead to 

degradation (UNCCD 2017). Landscape alteration caused by off-road vehicles is being noticed 

not only in developed countries but also in developing countries (Keshkamat et al. 2013; 

Ploughe & Fraser 2022). Dirt roads are a result of the pressure of the wheels of vehicles which 

can cause soil erosion (Padgett et al. 2008; Al-Dousari et al. 2019; Zhang et al. 2019; Cao et al. 

2021), sediment yield (Bravo-Linares et al. 2018; Ramos-Scharrón 2018; Nosrati & Collins 

2019), changes in vegetation cover (Crisfield et al. 2012; Assaeed et al. 2019; Hogan & Brown 

2021), and also social issues (Jackson 2015). Jackson (2015) showed that dust originating from 

unpaved mining roads in the South Gobi province in Mongolia endangers the health of local 

citizens and their animals.  

  

Mongolia is a Central Asian country with a total land territory of 1,564,115.7 km². It is severely  

affected by desertification and land degradation (Han et al. 2021). According to the 

Desertification Atlas of Mongolia, 76.9% of the total land area has been affected by 

desertification (Baasandai 2020). Partly due to uncertain legal conditions of land utilization, 

improper land use has resulted in adverse effects on land resources (Bazarragchaa 2017). The 

main human activities which have led to land degradation are overgrazing, mining activity, dirt 

roads, crop cultivation, deforestation, and settlement area expansion (Ministry of Nature and 

Environment 1997; Doljin 2010; Ochirbat 2013). 

 

Soil erosion caused by uncontrolled dirt roads is one of the main reasons for land degradation 

in Mongolia (Li et al. 2006; Ochirbat 2013). Due to the lack of paved roads and poor economic 

capacity to build paved roads, dirt roads play an essential role in transportation. They are 

broadly used as connections between settlement centres, mining sites, arable lands, winter 

camps, and other land uses in the rural areas (Byambaa & Murayama 2012). The total road 

network length in Mongolia is 49,200 km (UNECE 2018), of which 10,151 km are paved  

(National Statistics Office of Mongolia n.d.). This is, however, a general estimation due to the 

unmanaged nature of many dirt roads. The figure may increase if it also comprises the length 

of rural dirt roads (for example dirt roads that connect herders’ winter camps, summer camps, 

wells, and springs) and the length of dirt tracks running parallel to main roads (for example 

main roads which connect province centres and soum centres) (Byambaa & Murayama 2012; 

Ochirbat 2013). The rapid expansion of dirt roads in the vast land area of Mongolia makes it 

difficult to detect and register temporal dirt roads in the official database (Dashpurev et al. 

2020). Dashpurev et al. (2020) stated, for example, that temporal dirt roads caused by oil 

extraction in Eastern Mongolia have never been accounted for in official statistics due to the 

characteristics of those roads and they are often abandoned quickly after they are created.  

 

Keshkamat et al. (2013) identified 37 main national dirt road corridors with a total length of 

11,000 km running parallel to the main arterial road. Dashpurev et al. (2020) revealed that land 

area degraded by dirt roads and oil extraction infrastructure in the Menen Steppe and the Khalkh 

River area in Eastern Mongolia increased from 7,840 ha in 2005 to 14,730 ha in 2018. 

Ragchaadulam et al. (2020) estimated that the total length of the dirt roads caused by the Tavan 

Tolgoi coal mining in Tsogttsetsii soum in the Umnugobi province in Mongolia increased from 

476.2 km in 2000 to 1,716 km in 2015.    

   

The results of the different studies mentioned above that had been carried out in different parts 

of Mongolia (southern part: Ragchaadulam et al. 2020; eastern part: Dashpurev et al. 2020;  and 
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national level: Keshkamat et al. 2013) and covered areas of different sizes, from 72.5 km² 

(Ragchaadulam et al. 2020) to 20,000 km²  (Dashpurev et al. 2020)) suggest that dirt roads 

make a considerable contribution to land degradation in Mongolian rural areas. Moreover, these 

studies could support the assertion of Byambaa and Murayama (2012) that, if the official 

statistics would take rural dirt roads into account, the total length of the registered Mongolian 

road network might increase. Therefore, there is a need to conduct a comparative study on dirt 

road distribution and the contribution of dirt roads to land degradation in different geographical 

areas with various types of land utilization.    

 

The studies by Dashpurev et al. (2020) and Ragchaadulam et al. (2020) mentioned above 

covered areas with intensive mining industry. Mining, including illegal gold mining, and 

tourism are the main origins for the formation of dirt roads (Yadambaatar & Sandag 2010), 

while the increase in the number of vehicles also contributes to the creation of new dirt roads 

(Damdinsuren et al. 2008; Ochirbat 2013). It is still unclear to what extent the land area is 

degraded by dirt roads. Comprehensive research on the impact of dirt roads on land degradation 

has not yet been conducted (Dashpurev et al. 2020) and there is little information available 

about the total amount of land area degraded by transportation. Zamba et al. (2006) estimated 

that nearly 0.7 million ha of land are affected by vehicle-induced degradation, whereas Ochirbat 

(2013) noted that approximately 1.5 million ha of land area are degraded by road erosion in 

Mongolia. According to the UNECE (2018), as a result of the dirt track corridor running parallel 

to national main routes, more than 3 million ha of land are degraded. The remaining rural dirt 

roads with little use intensity also have some noticeable contributions to land degradation 

(UNECE 2018). 

 

Due to the significant impact of dirt roads on land degradation, there is a need to accurately 

determine the spatial distribution and size of land area that is affected by dirt roads and discuss 

their impact on the surrounding environment. Although some studies have focused on the 

ecological effect of dirt roads in Mongolia, only a few studies have made thorough 

investigations of the causal relationship between geographical factors and the width of dirt road 

corridors at the national level. Keshkamat et al. (2013) carried out an in-depth study on the 

causal relationship between geographical factors and dirt road corridors using Geographically 

Weighted Regression (GWR) and Ordinary Least Squares (OLS) Regression. Their results 

showed that correlation between corridor width and geographic variables varies throughout the 

country and that the corridor widths are not accidental but a result of drivers’ reaction to 

geographical factors. It is still unclear, however, how geographical factors influence dirt road 

density at the local level. 

  

Modelling and analysing the relationship between driving factors and environmental processes 

is essential to science-based decision-making for environmental protection. Global and local 

models can be used for modelling and analysing the relationship between driving factors and 

environmental processes (Du et al. 2014). Local spatial regression techniques were initially 

developed by Cleveland and Devlin in 1988 and the GWR is a subclass of the local spatial 

regression techniques (Cho et al. 2009). The GWR model may help to identify the emergence 

or existence of dirt roads in the study area. Conversely, in traditional global regression models 

such as OLR, the coefficients of the explanatory variables of the process are assumed to be 

constant throughout the whole study area, so the parameters estimated by such a regression 

model cannot give information on how the process being expressed by the parameter changes 

over space (Fotheringham & Sachdeva 2022).  
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Potential to investigate the spatially non-stationarity relationships between response variables 

and explanatory variables is the main advantage of GWR (Yang et al. 2019). Meanwhile, some 

shortcomings in relation to local multicollinearity (Wheeler & Tiefelsdorf 2005) and 

misspecification (Fotheringham & Sachdeva 2022) are commonly observed when applying 

GWR techniques. GWR techniques are widely used in spatial analysis (Chen et al. 2012) and 

they have wide-ranging applications in many research fields. For instance, they have been 

applied to detect the non-stationary relationships between dirt road corridors and geographic 

factors (Keshkamat et al. 2013), vegetation restoration and natural, policy, and socio-economic 

factors (Zhang et al. 2020), urban expansion and linear infrastructural, housing, and market 

forcing factors (Mondal et al. 2015), land consumption and geomorphologic, socio-

demographic, economic structural, and institutional quality factors (Punzo et al. 2022), road 

fatality rates and economic, infrastructural, and social developmental factors (Wachnicka et al. 

2021), and the relationship between infant mortality rates and economic and health care factors 

(Wang & Wu 2020).  

 

It is essential to identify land areas that are potentially affected by dirt roads and develop 

management measures to mitigate and prevent dirt road-related land degradation in Mongolia. 

In order to provide accurate information for land management planning, we need to understand 

the factors that influence dirt road density at the local level and the spatial distribution of those 

factors throughout the local territory. The focus of this project is therefore on the relationship 

between geographical factors and the expansion of dirt road density that can lead to soil erosion 

and changes in vegetation cover.  

 

The overall aim of this study was to investigate the relationship between geographical factors 

and dirt road density using a case study area in Mongolia to better understand these connections 

at a local level.  

 

This will be investigated through the following specific objectives:  

1. To identify key geographical factors that lead to expansion of dirt road density at the 

local level in Northern Mongolia  

2. To explore the suitability of spatial statistics techniques, which can be used to determine 

the correlation between geographical variables   

3. To estimate the relationship between geographical variables using a Geographically 

Weighted Regression model in order to determine spatial variation of the driving factors 

on dirt road density    

 

The research questions were:  

− What geographical factors can influence the increase of dirt road density at the local 

level?  

− Are there any key variables that explain the highest dirt road density at the local level? 

 

The project findings can be used as reference information for local decision-makers and land 

managers to make efficient decisions on land use planning and mitigate the negative influences 

of dirt roads. It can also provide the basis for monitoring the effectiveness of environmental 

protection policy implementation.  
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2. METHODS 

 

2.1 Study area 

 

The study area for this study covers the Darkhan, Khongor, Sharyngol, and Orkhon soums of 

Darkhan Uul province and Javkhlant soum of Selenge province in Mongolia. The study area 

has been chosen for several reasons. Firstly, this area has a combination of topographic features 

including medium and low mountains, plains, intermountain hollows, and river valleys. These 

various topographic features can help understanding of the relationship between natural factors 

and dirt road expansion. Secondly, this area plays a significant role in Mongolia’s economy. A 

diverse range of land utilization such as open pit coal mining, gold mining, grazing, cropland, 

and urban (Darkhan city, the second largest city of Mongolia) and rural settlement centres 

(soum and bag centre) can be found in the area. These various land utilization types can help 

understanding of the relationship between land use factors and dirt road expansion. Thirdly, the 

study area belongs to the Orkhon river basin which has been defined as one of the land 

degradation hotspot areas in Mongolia (Nyamtseren et al. 2019). Therefore, the expected 

research results can help to address the contributions of dirt roads to land degradation in this 

hotspot area.  

 

The study area is located in the northern part of Mongolia and covers a total land area of 4,465 

km² which is 0.29 percent of the total territory in Mongolia (Fig. 1). The elevation in this area 

ranges from 700 to 2,600 m above sea level. The area is situated on the north-western side of 

the Khentii mountain range and belongs to the Selenge river basin area. The land surface is 

uneven, and the geomorphological features are characterised by a combination of medium and 

low mountains, hills, steppes, intermountain hollows, and river valleys. The absolute height of 

the mountains reach 1,000-2,000 m, rising 600-800 m above the surrounding landscape 

(Dechingungaa et al. 2013).  

 

The area is subject to a harsh continental climate with cold winters and short summers. The 

temperature amplitude is high, and the growing season lasts from May to August. According to 

the weather observations in the period of 1991-2020, the monthly mean temperature in January, 

the coldest month of the year, is -23°C to -25.6°C. In July, the warmest month of the year, the 

mean monthly temperature is 19.6°C to 20.9°C. The mean annual precipitation is approximately 

330 mm, and a large amount of the total precipitation falls in summer as rain (IRIMHE n.d.). 

  

In terms of hydrology, the study area belongs to the Arctic Ocean Basin and is divided into 

separate catchment areas including the Sharyn Gol River catchment, the Yeroo River 

catchment, and the Kharaa River catchment. All these rivers originated in the Khentii mountain 

ranges and flow north and north-westward into the Orkhon River. Chestnut soil and kastanozem 

soils are commonly distributed in the study area. Common soil types in the mountain, hill, and 

intermountain hollow are kastanozem soil and chestnut soil. Alluvial meadow and meadow 

soils are distributed in the river valleys. The main soil textures are loamy, loamy sand, and 

sandy clay (Geobotanic 2015). 

 

Mongolia has four levels of administrative units. Mongolia is divided into the administrative 

units of aimag (aimag is equivalent to province) and the capital city. The capital city and aimags 

therefore constitute the second-level administrative units. Aimags (province) are further divided 

into soums (soum is equivalent to district). Soum is the third level administrative unit. Soums 

are further divided into bags (bag is equivalent to county) as the fourth level of administrative 
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units. The study area focuses on the third and fourth level of the administrative units of 

Mongolia. 

 

 
 

Figure 1. Location and land use of the Orkhon, Sharyn Gol, Darkhan, Khongor and Javkhlant 

soums in Mongolia. (Source: adapted from ALAMGC 2021).  
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As of 2019, a total of 104,141 people lived in the study area, which was 3.25% of the total 

population of Mongolia. In other words, 3.25% of the total population lives in 0.29% of the 

total land territory of Mongolia. 81.9% of the total population in the study area lives in Darkhan 

city, 1.9% in Javkhlant soum, 3.1% in Orkhon soum, 5.6%t in Khongor soum, and 7.5% in 

Sharyngol soum (National Statistics Office of Mongolia n.d.). The total livestock number in the 

study area is 442,763, of which 24,314 are horses, 58,260 cattle, 205,535 sheep, 154,594 goats, 

and 60 camels (National Statistics Office of Mongolia n.d.). 

 

2.2 Data  

 

Two kinds of spatial datasets (vector and raster) were used in this study. Generally, the 

explanatory variables were identified based on the study of Keshkamat et al. (2013). Keshkamat 

et al. (2013) used 15 variables in total, including distance to province centre, distance to county 

centre, distance to main rivers, distance to secondary rivers, distance to main river crossings, 

distance to secondary river crossings, distance to lakes and marshes, south aspect, terrain slope, 

total traffic density, ratio of light-to-heavy traffic, soil grain size index, land surface 

temperature, soil moisture index, and vegetation index in their study. Due to lack of data 

availability at the local level, traffic related variables (total traffic density and ratio of light-to-

heavy traffic) were not considered in this study. Since the research was conducted at the local 

level, it was assumed that the influence of the proximity to river crossing on dirt roads could be 

represented by the influence of the proximity to the main river and tributary river. Therefore, 

river crossing variables are not accounted for in this study. In order to reflect local geographic 

factors, the following additional variables were considered in this study: cropland, mining, 

paved road, herders’ winter camps, and railroad. After confirming data availability, 17 variables 

were selected for the study (Table 1).  

 

Land use datasets including settlement area, cropland, mining, paved road, unpaved road, 

railroad, and herder’s winter camp location were provided by the National Geodatabase of the 

“Mongolian national unified land territory” of the Agency for Land Administration and 

Management, Geodesy and Cartography of Mongolia (ALAMGC 2021).  

 

Variables representing soil and vegetation factors were generated from Sentinel 2 Level 1C data 

and Landsat 8 OLI Level 1 data. Keshkamat et al. (2013, p. 437) stated, “being the end of spring 

and onset of summer, it is the most optimal (balanced) period to derive variables such as 

MSAVI (Modified Soil Adjusted Vegetation Index), SMI (Soil Moisture Index), and GSI 

(Grain Size Index)”. Therefore, cloud-free 4 tiles (T48UWA, T48UXA, T48UWV, and 

T48UXV) Sentinel 2 level 1C data acquired on 30 August 2021 and cloud-free 2 tiles (path 

132, rows 025 and 026) Landsat 8 OLI level 1 data acquired on 21 August 2015 were 

downloaded.  

 

Sentinel 2 satellites launched by the European Space Agency provide remotely sensed data with 

high temporal (5 days), spatial (10 m, 20 m, and 60 m), and spectral (13 bands) resolution to 

users (ESA 2015). Spectral bands (with 10 m spatial resolution) including band 2 (blue at 0.490 

µm), band 3 (green at 0.560 µm), band 4 (red at 0.665 µm), and band 8 (near infrared at 0.842 

µm) were used in this study.   
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Table 1. Geographic factors, variable layers and data sources used in the study. 

Factor Variable Source 

Proximity to 

settlements 

Distance to province centre Spatial datasets are acquired from the Geodatabase of 

the “Mongolian national unified land territory” of the 

ALAMGC (2021) 

Distance to soum centre 

Distance to bag centre and 

recreation site 

Proximity to land 

use types 

Distance to cropland 

Distance to mining  

Distance to paved road 

Distance to railroad 

Proximity to a 

water body 

Distance to main river Vector data digitized from the Topography map of the 

NAGC (1984) Distance to tributary river 

Distance to lake 

Soil 

Soil moisture index (SMI) Raster datasets are generated from the Landsat OLI 8 

level 1 data (acquisition date: 21 August 2015, path 

132/ row 025-026, spatial resolution 30m) from the 

USGS (2020) 

Land surface temperature 

(LST) 

Topsoil grain size index 

(TGSI) 

Raster datasets are generated from the Sentinel 2 level 

1C data (acquisition date: 30 August 2021, tile: 

T48UWA, T48UWV, T48UXA, T48UXA) from the 

ESA (2021) 

Vegetation Vegetation index (NDVI) 

Terrain condition Terrain slope SRTM Digital Elevation Model (DEM) obtained from 

USGS (2018) Aspect  

Dirt road Dirt road density Vector file is digitized from the TGSI map generated 

from the Sentinel 2 level 1C data (acquisition date: 30 

August 2021, tile: T48UWA, T48UWV, T48UXA, 

T48UXA) from the ESA (2021) 

 

 

The Landsat 8 satellite was launched by the National Aeronautics and Space Administration 

(NASA) and United States Geological Survey (USGS) in 2013. It has two instruments, the 

Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), that collect data with a 

spatial resolution of 15 m (panchromatic band), 30 m (visible, near infrared, and short-wave 

infrared, coastal/aerosol, cirrus bands), and 100 m (thermal infrared bands) (USGS 2019). Four 

spectral bands: the red band (0.636-0.673 µm), NIR band (0.851-0.879 µm), TIR-1 band (10.60-

11.19 µm), and TIR-2 (11.50 -12.51 µm) of the Landsat 8 data were used in this study.         

 

Terrain slope and aspect layers produced from USGS’s Shuttle Radar Topographic Mission (1 

Arc-Second Global, spatial resolution 30 m) DEM data using Spatial Analyst Toolbox in 

ArcGIS 10.8.1 software.  

 

2.3 Geographic analysis   

 

A spatial statistical analysis was used in this study. The GWR and OLS models were employed 

to investigate the relationship between dirt road density and geographical factors. The software 

used in this study were Microsoft Excel 365 (Microsoft Corporation n.d.) and R Studio (RStudio 

Team 2020) for data pre-processing and statistics, QGIS 3.26.0 (QGIS Development Team 

2022) for data pre-processing, Arc GIS 10.8 (ESRI INC 2020), and ArcGIS Pro 2.9 (ESRI INC 

2021) for spatial analysis and mapping.  
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2.3.1 Data preparation   

 

All datasets were transformed into the same coordinate system (WGS84 geocentric coordinate 

system, UTM projection, central meridian 105°E) after they had been collected from the 

relevant sources. Vector data were converted into Euclidean distance raster data (spatial 

resolution is 30 m) and extracted by the study area using the Extraction and the Rasterize 

algorithm in QGIS 3.26.0 (QGIS Development Team 2022).   

 

The dirt road density dataset was considered as a dependent variable in this study. Dirt roads 

were digitized from the TGSI map by visual interpretation. TGSI maps were generated from 

the Sentinel 2 Level 1C data obtained from ESA (2021).  In order to accurately digitize the dirt 

road, both dirt road vector data layers which originated from the ALAMGC (2021) and Google 

Earth Pro were used as primary reference data. The dirt road shape file originating from Google 

Earth Pro was created by digitizing satellite images from Landsat / Copernicus. The dates of 

the mosaic satellite images were 5 June 2004, 9 August 2006, 22 July 2015, 23 June 2017, 23 

April 2018, 9 March 2019, 10 April 2019, 4 May 2019, 2 July 2019, and 14 July 2019.     

 

After the creation of the dirt road vector data, dirt road density was calculated by dirt road 

length per 1 km² land area. In order to obtain dirt road density values, grid cells with an area of 

1 km² were generated all over the study area. The total length of dirt roads in each grid cell was 

determined using the Sum line lengths algorithm in QGIS 3.26.0 (QGIS Development Team 

2022). 

 

The remote sensing spectral indices Normalized Difference Vegetation Index (NDVI), Topsoil 

Grain Size Index (TGIS), Soil Moisture Index (SMI), and Land Surface Temperature (LST) 

were used as input parameters for spatial statistical analysis. Sentinel 2 level 1C products with 

radiometric and geometric correction were provided in Top-Of-Atmosphere reflectance (ESA 

2015). All downloaded Sentinel 2 Level 1C images were atmospherically corrected using the 

Semi-Automatic Classification Plugin (SCP) of the QGIS 3.26.0 software.  

 

NDVI was calculated by:  

 

NDVI = (NIR – RED) / (NIR + RED)                                  (1) 

                 

The topsoil Grain Size Index was calculated as defined by Xiao et al. (2007):   

 

TGSI = (RED – BLUE) / (RED + BLUE + GREEN)          (2) 

         

where BLUE is the blue band with central wavelength 490 nm, bandwidth 65 nm  (band 2 

of the Sentinel product), GREEN is the green band with central wavelength 560 nm, 

bandwidth 35 nm (band 3 of the Sentinel product), RED is the red band with central 

wavelength 665 nm, bandwidth 30 nm (band 4 of the Sentinel product), and NIR is the 

near-infrared band with central wavelength 842 nm, bandwidth 115 nm (band 8 of the 

Sentinel product).  

 

Sentinel 2 satellite products do not have a thermal band. Therefore, Landsat satellite products 

were used for calculation of Land Surface Temperature (LST) and Soil Moisture Index (SMI). 

Landsat Level 1 products were radiometrically and geometrically corrected products. These 

products can be rescaled to the Top-Of-Atmosphere reflectance or spectral radiance because 

they are represented by Digital Numbers (DNs) (USGS 2019). Before calculating spectral 
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indices, Landsat 8 Level 1 images were atmospherically corrected using the Semi-Automatic 

Classification Plugin (SCP) of the QGIS 3.26.0 software. In order to retrieve LST and SMI 

from Landsat products, Spectral Radiance and Top-Of-Atmosphere Brightness Temperature 

were calculated using the methods provided by Landsat 8 (L8) Data Users Handbook (USGS 

2019).  

 

Spectral Radiance was calculated by:  

 

𝐿𝜆 = 𝑀𝐿 ∗  𝑄𝑐𝑎𝑙  +  𝐴𝐿                                 (3) 

     

where Lλ is spectral radiance (W/(m² * sr * µm)), ML is radiance multiplicative scaling 

factor for the band, AL is radiance additive scaling factor for the band, Qcal is Level 1 pixel 

value in DN. Scaling factors can be found from the metadata file attached with the Landsat 

product. 

 

The formula for Top-of-Atmosphere Brightness Temperature calculation is given below: 

 

𝑇 = ( 
𝐾2

ln(
𝐾1
𝐿𝜆

+1)
 )                                            (4) 

  

where T is top-of-atmosphere brightness temperature (K), Lλ is spectral radiance (W/(m² * 

sr * µm)), K1 and K2 is band-specific thermal conversion constant. Band-specific thermal 

conversion constant can be found from the metadata file attached with the Landsat product 

(USGS 2019, p. 54).     

 

Temperature in degrees Kelvin (K) can be converted to degree Celsius through the following 

calculation:  

 

Celsius (°C) = Kelvin (K)-273.15                  (5) 

 

Land surface emissivity and proportion of vegetation were calculated by following Haldar and 

Majumder (2022). The proportion of vegetation was calculated using the following equation: 

 

𝑃𝑣 = [
𝑁𝐷𝑉𝐼− 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥− 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 
]

2

                              (6) 

 

where Pv is proportion of vegetation, and NDVI is Normalized Difference Vegetation Index 

calculated by equation 1. 

 

Land surface emissivity was computed by:   

 

ɛ = 0.004 * Pv + 0.986                                   (7) 

 

where ɛ is land surface emissivity and Pv is proportion of vegetation calculated by equation 

6.  

 

 

 

Land surface temperature was determined by following Congedo (2016):  
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𝐿𝑆𝑇 =  
𝑇

[1+ {(𝜆∗
𝑇

𝜌
)∗ln 𝜀}]

                              (8) 

 

where LST is land surface temperature, λ is wavelength of emitted radiance (centre 

wavelength of band 10 of the Landsat satellite is 10.8 µm), T is top-of-atmosphere brightness 

temperature calculated by equation 4, ɛ is land surface emissivity computed by equation 7, 

ρ = h * c / s = 14388 µm K (h is Planck’s constant = 6.626 * 10-34 J s; c is velocity of light 

= 2.998 * 108 m/s; s is Boltzmann constant = 1.38 * 10-23 J/K ).  

  

Soil moisture was calculated based on the Temperature – Vegetation Dryness Index (TVDI) 

defined by Sandholt et al. (2002). TVDI was calculated by the following equation:  

 

𝑇𝑉𝐷𝐼 =  
𝑇𝑆− 𝑇𝑆𝑚𝑖𝑛

𝑎+𝑏 𝑁𝐷𝑉𝐼−𝑇𝑆𝑚𝑖𝑛
                             (9) 

   

where TSmin is the minimum surface temperature in the triangle, defining the wet edge, TS 

is the observed surface temperature at the given pixel, NDVI is the observed normalised 

difference vegetation index, a and b are parameters defining the dry edge modelled as a linear 

fit to data (TSmax = a + bNDVI) where TSmax is the maximum surface temperature 

observation for a given NDVI (Sandholt et al. 2002, p. 215).  

 

The NDVI image generated by Landsat 8 data was clustered by an interval of 0.1 in order to 

determine the dry and wet edge of the LST – NDVI spectral space. The maximum and minimum 

LST values of each NDVI cluster were plotted against corresponding NDVI values. Then dry 

and wet edges were found from the scatterplot by a linear regression line that was drawn through 

extracted LST values. The dry edge line was found to be y =  - 9.5262 * NDVI + 34.126 (R² = 

0.5306) and the wet edge line was found to be y = 0.2621 * NDVI + 17.783 (R² = 0.0044) ( 

Figure 2). The intercepts and slopes of the dry and the wet edge were used for estimation of 

TVDI. 
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Figure 2. a) NDVI – LST scatter plot for the TVDI and b) the regression coefficients of the dry 

and wet edge obtained from the maximum and minimum LST values of corresponding NDVI 

clusters with 0.1 intervals. LTS_min and LST_max were indicated for the minimum and 

maximum values of the LST within the corresponding NDVI clusters. Linear (LST_min) was 

indicated by the Wet edge, Linear (LST_max) was indicated by the Dry edge. NDVI and LST 

were generated from the Landsat 8 OLI Level 1 data (acquisition data: 21 August 2015, 

path:132 row: 025-026, obtained from the USGS (2020).   

0

5

10

15

20

25

30

35

40

-0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

L
S

T
 (

d
eg

re
e 

C
el

si
u
s)

NDVI

(a)

Pixel values of the LST layer

y = 0,2621x + 17,783

R² = 0,0044

y = -9,5262x + 34,126

R² = 0,5306

0

5

10

15

20

25

30

35

40

-0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6

L
S

T
 (

d
eg

re
e 

C
el

si
u
s 

)

NDVI

(b)

LST_min LST_max

Linear (LST_min) Linear (LST_max)



GRÓ Land Restoration Training Programme 

 

 

12 

 

Input layers prepared for the subsequent analysis are shown in Figure 3. Here, soum centre and 

bag centre datasets were combined into a single input layer named by Soum and Bag centre. 
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Figure 3. Input layers for the subsequent analysis in this study. 

The various input layers use different units due to their various sources and were measured with 

different approaches. Therefore, in order to eliminate such differences, a data standardization 

procedure was used in this study. Input layers were individually standardized based on 

Otgonbayar et al. (2017). After the standardization, values of each input layer were ranged from 

0 to 1. The standardization formula was given below:  

 

Ei = (X i – X min) / (X max – X min)                    (10) 

 

where: Ei is the value of standardized in pixel i, X min is the minimum value of the individual 

layer, X max is the maximum value of the individual layer.    

 

Data points for the location and variables (independent and dependent) ought to be determined 

in order to carry out the regression analysis (Du et al. 2014). The systematic sampling method 

was used for the study. Grid points applied for further analysis were created from the grid cells 

(area of each grid cell was 1 km²) with the value of dirt road density. A total of 2,461 points 
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were selected for the analysis. In order to build regression points, pixel values of each input 

raster layer were extracted by grid points using the Extraction tool in ArcGIS 10.8.1 (ESRI INC 

2020).  

 

2.3.2 Variable screening and model selection  

 

In order to define the statistical association between dependent and independent variables, a 

bivariate correlation analysis was employed. If an independent variable has no association with 

the dependent variable and a statistically non-significant relationship with the dependent 

variable, that independent variable was omitted from the subsequent analysis. The high values 

(more than 0.7) in the Pearson’s correlation coefficient matrix indicate the multicollinearity of 

the variables (Tang et al. 2020). In this study, Pearson’s product moment correlation 

coefficients between independent variables higher than 0.5 were considered one of the criteria 

to exclude an independent variable. 

      

The Person’s product-moment correlation coefficient, r can be calculated by the following 

formula:  

  

𝑟 =  
∑(𝑋− �̅�)(𝑌− �̅�)

√[∑(𝑋 – �̅�)2][∑(𝑌− �̅�)2]
              (11) 

          

 

where: r is the Pearson’s correlation coefficient, X and Y are values of the variables, X̅ and 

Y̅  are means of the variables (Healey & Donoghue 2021, p. 369). 

 

Pearson’s product-moment correlation test was performed using the “sjPlot” package (Lüdecke 

et al. 2022) in Rstudio (RStudio Team 2020). The result of the Pearson’s product-moment 

correlation test is shown in Table 6. There was not any variable that had no correlation (r = 0) 

with dirt road density, but some variables failed to reject the null hypothesis (Ho: there is no 

correlation between dirt road density and independent variables). Variables including distance 

to lake (r = 0.02, p = 0.3), distance to mining (r = 0.01, p = 0.66), and terrain aspect (r = - 0.02, 

p = 0.43) were not statistically significant in their association with dirt road density. Therefore, 

those independent variables that have non-significant relationships with the dependent variable 

were omitted from further analysis.  

 

All the remaining variables had a statistically significant association with dirt road density at a 

99% confidence level. These variables were: distance to herders’ winter camp (r = 0.07), 

distance to cropland (r = 0.11), Land surface temperature (LST) (r = 0.12), Normalized 

Difference Vegetation Index (NDVI) (r = - 0.09), distance to paved road (r = 0.1), distance to 

province centre (r = 0.09), distance to railroad (r = 0.18), distance to main rivers (r = 0.06), 

distance to tributary rivers (r = - 0.09), terrain slope (r = - 0.24), distance to soum and bag 

centre (r = 0.16), Top Grain Size Index (TGSI) (r = 0.12), Temperature – Vegetation Dryness 

Index (TVDI) (r = 0.13).  

 

Results of the Pearson’s product-moment correlation test showed that there were 

intercorrelations between independent variables. Correlation coefficients above 0.5 were found 

between following variables: NDVI and TGSI (r = - 0.85, p < 0.001); TVDI and LST (r = 0.98, 

p < 0.001); LST and distance to lake (r = 0.50, p < 0.001); distance to paved road and distance 

to cropland (r = 0.5, p < 0.001); distance to paved road and distance to lake (r = 0.62, p < 

0.001); distance to province centre and distance to lake (r = 0.5, p < 0.001); distance to province 
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centre and distance to paved road (r = 0.58, p < 0.001); distance to tributary rivers and distance 

to mining (r = 0.61, p < 0.001), distance to tributary rivers and distance to paved road (r = - 

0.77, p < 0.001), distance to tributary rivers and distance to railroad (r = - 0.54, p < 0.001); 

distance to soum and bag centre and distance to paved road (r = 0.51, p < 0.001), distance to 

soum and bag centre and distance to railroad (r = 0.55, p < 0.001) and distance to herders’ 

winter camp and distance to cropland (r = 0.57, p < 0.001). Based on Keshkamat et al. (2013), 

the TGSI and LST variables were omitted from the subsequent analysis. Keshkamat et al. (2013) 

noted that TGSI and LST were not locally significant variables in the GWR. As a result, 

variables including distance to cropland, distance to paved road, distance to railroad, and 

distance to tributary rivers were excluded from the analysis.  

 

Multicollinearity can result in a biased model result through the inaccurate estimation of 

regression coefficients (Tang et al. 2020). Dormann et al. (2012, p. 28) noted “Perfect 

collinearity occurs if predictions are exact linear functions of each other and is simply a case of 

model misspecification – one variable needs to be omitted”. Commonly used approaches for 

multicollinearity are variance inflation factor (VIF) and Pearson correlation coefficient matrix 

(Tang et al. 2020). The variance inflation factor value was calculated with the following formula 

(Daoud 2017): 

 

VIF = 1 / (1 – Ri
2)                    (12) 

                    

where: Ri
2 is the coefficient of determination of the independent variable i.   

 

It is considered as multicollinearity if the variance inflation factor value of the independent 

variable is higher than 7.5 and it should be removed from the regression model (Qiu et al. 2012). 

Variance inflation factor values of the independent variables were computed using the “car” 

package (Fox & Weisberg 2019) in RStudio (RStudio Team 2020). Results of the VIF test are 

shown in Table 2.  

 

Table 2. VIF values of the independent variables.  

Variable  VIF value Variable VIF value  

Distance to herders’ winter camp 1.215 Distance to province centre  1.271 

NDVI 1.231 Terrain slope 1.109 

Distance to main river 1.078 TVDI 1.271 

Distance to soum and bag centre 1.188   

 

There was no independent variable with a high VIF value. VIF values of variables ranged from 

1.176 to 2.166. The VIF test results showed that all variables can be well fitted into the 

regression model in terms of multicollinearity. 

 

Three sub-models were run in parallel through the Ordinary Least Square (OLS) Regression 

and Geographically Weighted Regression (GWR). All independent variables were arranged 

into these three sub-models. The variables related to natural factors including distance to main 

rivers, terrain slope, NDVI, and TVDI were arranged into the first sub-model (Model 1), the 

variables representing land use factors (distance to province centre, distance to herders’ winter 

camp, and distance to soum and bag centre) were arranged into the second sub-model (Model 

2), and factors and all of variables together were arranged into the third sub-model (Model 3).  
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In order to find the appropriate models in which all variables are statistically significant to the 

model, the Exploratory Regression Tool in the Spatial Statistics Toolbox in Arc GIS Pro 2.9 

(ESRI INC 2021) was used in this study. The Exploratory Regression Tool can find the best 

combination of candidate variables for the OLS regression model based on the evaluation of all 

possible combinations of the input independent variables within the threshold of user-specified 

criteria (ESRI n.d.). In the exploratory regression, the following search criteria were taken: 10 

for the maximum number of explanatory variables, 5 for the minimum number of explanatory 

variables, 0.5 for the minimum acceptable adjusted R squares, and 0.05 for the maximum 

coefficient p-value cut-off. Potential combinations of candidate variables found by the 

exploratory regression were then compared with each other by the adjusted R squares and 

Akaike’s Information Criterion (AIC). 

 

Both R² and Akaike’s Information Criterion (AIC) are measurements of model performance. 

Weisent et al. (2012, p. 7) noted that “based the AIC goodness-of-fit statistic for comparing 

models, the model with the lowest AIC statistic is the one with the best model fit”. The goodness 

of fit and the complexity of the model can be measured by AIC (Du et al. 2014). The AIC can 

be calculated as follows:  

 

𝐴𝐼𝐶 = 2𝑛 𝑙𝑛(�̂�) + 𝑛 𝑙𝑛(2𝜋) + 𝑛 (
𝑛=𝑡𝑟(𝑆)

𝑛−2−𝑡𝑟(𝑆)
)                 (13) 

                 

where: n is the number of the sample size, σ̂ is the standard deviation of the error term, and 

tr(S) is the trace of the hat matrix.   

 

Exploratory regression results showed that there was not any combination of candidate 

variables that met the criterion of adjusted R². Adjusted R² of all possible combinations was 

0.06-0.07 in the natural factors data set (Table 3), 0.02-0.03 in the land use related factors data 

set (Table 4), and 0.07-0.08 in the integration of all data sets (Table 5).   

 

Table 3. Summary of potential combinations of candidate variables from the natural factors 

data set (SP is terrain slope, TVDI is Temperature – Vegetation Dryness Index, RV_I is distance 

to main river, and NDVI is Normalized Difference Vegetation Index). (p-value: *** is p < 0.01, 

** is p < 0.05, and * is p < 0.1). 

Potential combination of candidate variables Adjusted R² AICc 

- SP*** 0.06 - 3052.48 

+ TVDI*** - SP*** 0.06 - 3071.26 

- NDVI*** - SP*** 0.06 - 3054.12 

+ RV_I*** - SP*** 0.06 - 3060.06 

+ RV_I*** - SP*** - NDVI* 0.06 -3060.65 

+ RV_I*** -SP*** + TVDI*** 0.07 - 3079.88 
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Table 4. Summary of potential combinations of candidate variables from the land use related 

factors data set (SC is distance to soum and bag centre, PC is distance to province centre, and 

WC is distance to herders’ winter camp). (p-value: *** is p < 0.01, ** is p < 0.05, and * is p < 

0.1) 

Potential combination of candidate variables Adjusted R² AICc 

+ SC*** 0.02 - 2971.33 

+ SC*** + WC** 0.02 - 2972.52 

+ SC*** + PC*** 0.03 -2977.16 

+ PC** + SC*** + WC* 0.03 - 2977.52 

 

Table 5. Summary of potential combinations of candidate variables from the integration of all 

data sets (SP is terrain slope, TVDI is Temperature – Vegetation Dryness Index, RV_I is 

distance to main river, and SC is distance to soum and bag centre). (p-value: *** is p < 0.01, 

** is p < 0.05, and * is p < 0.1) 

Potential combination of candidate variables Adjusted R² AICc 

- SP*** + SC*** 0.07 -3085.35 

+ SC*** - SP*** + TVDI*** 0.07 - 3099.84 

+ RV_I*** - SP*** + SC*** 0.07 -3094.70 

+ SC*** - SP*** + TVDI*** + RV_I*** 0.08 -3110.09 

  

 

Among the possible combinations, the following models were chosen for subsequent analysis 

in this study. 

 

Model 1:   

+ RV_I*** -SP*** + TVDI*** 

 

Model 2:  

+ SC*** + PC** + WC* 

 

 Model 3:  

+ SC*** - SP*** + TVDI*** + RV_I*** 

 

2.3.3 Ordinary Least Square Regression  

 

The Ordinary Least Square (OLS) Regression is a global linear regression model (Zhang et al. 

2020). Fotheringham and Sachdeva (2022, p. 2) noted, “A global model produces a single 

estimate for each conditioned relationship represented in the model”.   

 

The OLS can be expressed as  

 

𝑦 =  𝛽0 + ∑ 𝛽𝑘𝑥𝑘𝑘 +  𝜀                 (14) 

                         

where: y is the dependent variable, β0 is the intercept, x is the observed matrix about k 

independent variables, βk is the kth coefficient, and ɛ is a vector of k random error terms 

with distribution N(0, σ² I) (Du et al. 2014).  
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2.3.4 Geographically Weighted Regression  

 

Pimpler (2017, p. 138) stated, “Geographically Weighted Regression (GWR) is a local form of 

linear regression for modelling spatially varying relationships. GWR works by creating a local 

model of the variables or process that you are attempting to understand”. In the GWR, the model 

parameters assume the coefficients of the independent variables to be non-stationary and to 

vary across each location in the study area. In the distinct locations, the parameters of the GWR 

model are various and each location has its own local regression parameters representing the 

relationship (Huang & Leung 2002).  

 

The GWR model can be expressed by the following equation: 

 

Z(sᵢ) = β₀ (sᵢ) + β₁ (sᵢ) x₁ (s₁) + … + βₖ (sᵢ) xₖ (sᵢ) + ɛᵢ                  (15) 

                  

where sᵢ is the location at which the parameters are estimated  

 

The parameters for GWR may be estimated by solving: 

 

(sᵢ) = (Xᵀ W (sᵢ) X)‾¹ Xᵀ W (sᵢ) z                       (16) 

                            

where W (sᵢ) is a n by n matrix, the diagonal elements of which are the geographical 

weightings of observations around point i: 

 

                    (17) 

  

where 𝑤ᵢₙ is the weight assigned to the observation at location n (Lloyd 2010, p. 123).   

 

The Gaussian function has been widely used in GWR contexts. With this function, a weight at 

the observation i is obtained with:  

 

𝑤ᵢⱼ = exp [ -0.5 (𝑑 / 𝜏)² ]                 (18) 

                              

where 𝑑 is the Euclidean distance between the location of observation i, and location 𝑗 and 

𝜏 is the bandwidth of the kernel (Lloyd 2010, p. 74).  

 

The goodness-of-fit of a GWR can be assessed using the geographically weighted coefficient 

of determination: 

 

𝑟² ( sᵢ ) = ( TSSʷ - RSSʷ ) / TSSʷ                  (19) 

 

where TSSʷ is the geographically weighted total sum of squares: 
 

𝑇𝑆𝑆𝑤 =  ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 (𝑧𝑗 − 𝑧�̅�)

2             (20) 
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and RSSʷ is the geographically weighted residual sum of squares: 

 

                           𝑅𝑆𝑆𝑤 =  ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 (𝑧𝑗 −  �̂�𝑗)2                     (21)           (Lloyd 2010, p. 124) 

 

GWR coefficients of each of the independent variables were examined by its t - value at the 95 

% confidence level.        

 

2.3.5 Spatial autocorrelation analysis 

 

Mennis and Jordan (2005, p. 252) stated, “Spatial autocorrelation, also referred to as spatial 

dependency, occurs when the distribution of the values of georeferenced observations is not 

spatially random; rather, observations located near one another tend to have similar (or 

particularly dissimilar) values”. Moran’s I is a commonly used spatial autocorrelation test 

(Longley et al. 2001). Global and local Moran’s I tests were used for verifying spatial 

stationarity of regression residuals.  

 

Moran’s I is global in the sense that it estimates the overall degree of spatial autocorrelation for 

a data set. Local spatial autocorrelation statistics provide estimates disaggregated to the level 

of the spatial analysis units, allowing an assessment of the dependency relationships across 

space. Moran’s I behaves like a Pearson correlation coefficient. Its value is generally between 

– 1 and + 1. Positive values indicate positive autocorrelation and vice versa. Global Moran’s I 

is calculated as follows: 

 

𝐼(𝑑) =
1

𝑊
 ∑ ∑ 𝑤𝑖𝑗(𝑧𝑖− �̅�)×(𝑧𝑗 − �̅�)𝑖≠1𝑖

1

𝑛
∑ (𝑧𝑖− �̅�)2

𝑖

                    (22) 

            
where I(d) is the Moran coefficient for the distance class d, zi’s are the values of the variable, 

and i and j vary from 1 to n. wij’s take the value 1 when the pair of location (i,j) pertains to 

distance class d and 0 otherwise. W is the sum of the wij’s (Kalkhan 2011, p. 66). 

 

The Anselin Local Moran’s I can be calculated by the following equation:  

  

 𝐼𝑖 = (
𝑥𝑖− �̅� 

𝑠𝑖
2 ) ∑ 𝑤𝑖𝑗 (𝑥𝑗 − �̅�)𝑛

𝑖=1,𝑗≠𝑖                    (23) 

                 

 

𝑠𝑖
2 =  

∑ (𝑥𝑗− �̅�)𝑛
𝑗=1,𝑗≠𝑖

𝑛−1
−  �̅�2                       (24) 

              

where xi is an attribute for feature i, X̅ is the mean of the corresponding attribute, wij is the 

spatial weight between feature i and j, n is the total number of features (Guo et al. 2021).  

 

2.3.6 Spatial non-stationarity analysis 

 

Selection of a bandwidth for the GWR is vital in terms of shaping the fit of the model (Charlton 

& Fotheringham 2009). The scale dependence of non-stationarity in the GWR parameter 

coefficients can be defined by following formula (Zhao et al. 2015): 
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𝑆𝐼 =  
𝛽𝐺𝑊𝑅_𝑖𝑞𝑟

2 × 𝑂𝐿𝑆𝑠𝑒
                                        ( 25) 

where SI is the stationary index, βGWR_iqr is the interquartile range of standard errors for 

each independent variable’s estimated coefficients in the GWR, and OLSse is the standard 

error of the same variable’s coefficients in the OLS regression.  

 

Values of the stationary index of more than 1 (SI > 1) showed significant spatial non – 

stationarity at p < 0.05 level (Liu et al. 2019). Scale dependence of spatial non-stationarity in 

the local parameter coefficients were defined by iterated GWR analysis with increasing fixed 

kernel bandwidths from 1 km to 12 km at 1 km increments.  

 

  

3. RESULTS 

 

3.1 Spatial characteristics of dirt road distribution and bivariate correlations  

 

A total of 2,998 kilometres of long dirt roads were determined in this study. Dirt road densities 

defined by total dirt road length per 1 km² land area varied all over the study area. The amount 

of dirt road densities ranged from 1.45 m/km² to 5965 m/km². The mean density of dirt road 

was 1218 m/km². A histogram of dirt road density distribution in the study area is shown in 

Figure 4 and the spatial distribution of the dirt road density is shown in Figure 5. 

 

The results of Global Moran’s I statistics (Moran’s I 0.15, z - score 8.84, p < 0.000) showed 

that there was positive spatial autocorrelation in dirt road density. The spatial autocorrelation 

of dirt road density detected by Anselin Local Moran’s I statistics (LISA) is shown in Figure 6. 

Confidence level for all clusters were 95%. High-High (HH) clusters indicated that area with a 

high value of dirt road density was surrounded by other areas with a high value of dirt road 

densities. HH clusters were mainly distributed near the settlement areas. Moreover, they were 

observed around the mining areas, not only the Shayn Gol open pit coal mining area, but also 

gold mining areas in the upper reach of the Sharyn Gol River. Some of the HH clusters observed 

along the Sharyn Gol River valley and the northern part of the Eroo river were formed in 

grasslands that are used for herders’ summer camps. High-Low (HL) and Low-High (LH) 

outliers are produced when area with a high (or low) value of dirt road density is surrounded 

by other areas with a low (or high) value of dirt road density. Generally, the LH outliers were 

observed near the HH clusters, and the LL clusters were noticed in the mountains.    
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Figure 4. Histogram of dirt road density (m/km²) in the study area.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Spatial distribution of the dirt road density in the study area. 
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Figure 6. Spatial autocorrelation of dirt road density detected by Anselin Local Moran’s I 

statistics (p < 0.05). High-High and Low-Low clusters indicate positive spatial autocorrelation 

(an area neighbouring by area with a similar dirt road density value), High-Low and Low-High 

outliers indicate negative spatial autocorrelation (an area neighboured by an area with a 

different dirt road density value).      

The result of Pearson’s correlation test is shown in Table 6. As can be seen in table 6, the 

statistical association between dependent variable (dirt road density) and independent variables 

were positive; these include distance to herders’ winter camp, distance to cropland, distance 

to lake, distance to mining, distance to paved road, distance to province centre (city), distance 

to railroad, distance to main river, distance to soum and bag centre, Top Grain Size Index 

(TGSI), land surface temperature (LST), and Temperature – Vegetation Dryness Index (TVDI). 

In contrast, the statistical association between dirt road density and Normalized Difference 

Vegetation Index (NDVI), distance to tributary river, terrain aspect and terrain slope were 

negative. The relationship between dirt road density and distance to mining, distance to lake, 

and terrain aspect were statistically insignificant.  
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Table 6. Correlations between dependent (dirt road density (DR)) and independent variables, and inter-

correlations between independent variables (n = 2461). Independent variables are distance to soum and 

bag centre (SC), distance to herders’ winter camp (WC), distance to cropland (CL), distance to lake 

(LK), land surface temperature (LST), distance to mining (MG), Normalized Difference Vegetation Index 

(NDVI), distance to paved road (PR), distance to province centre (PC), distance to railroad (RR), 

distance to main river (RV_I), distance to tributary river (RV_II), terrain slope (SP), terrain aspect (AP), 

Top Grain Size Index (TGSI), and Temperature - Vegetation Dryness Index (TVDI). The computed 

correlation used Pearson-method with listwise-deletion. Statistical significance: *** is p < 0.001, ** is 

p < 0.01, * is p < 0.05, and ° is p < 0.1. 

  DR CL LK LST MG NDVI PR PC RR RV_I RV_II SP TGSI TVDI AP SC WC 

DR  1 
0.11 

*** 
0.02 

0.12 
*** 

0.01 
-0.09 

*** 

0.10 
*** 

0.09 
*** 

0.18 
*** 

0.06 
** 

-0.09 
*** 

-0.24 
*** 

0.12 
*** 

0.13 
*** 

-0.02 
0.16 

*** 

0.07 
*** 

CL 
0.11 

*** 
1  

0.25 
*** 

0.23 
*** 

-

0.03 

-0.24 
*** 

0.50 
*** 

0.44 
*** 

0.25 
*** 

-

0.19 
*** 

-0.12 
*** 

-0.30 
*** 

0.30 
*** 

0.25 
*** 

-0.01 
0.27 

*** 

0.57 
*** 

LK 0.02 
0.25 

*** 
1  0.50*** 

-

0.35 
*** 

-0.31 
*** 

0.62 
*** 

0.50 
*** 

0.12 
*** 

0.06 
** 

-0.40 
*** 

-0.21 
*** 

0.27 
*** 

0.44 
*** 

-0.05 
* 

0.07 
*** 

0.27 
*** 

LST 
0.12 

*** 

0.23 
*** 

0.50 
*** 

 1 

-

0.25 
*** 

-0.30 
*** 

0.47 
*** 

0.32 
*** 

0.22 
*** 

-

0.04 
* 

-0.35 
*** 

-0.16 
*** 

0.44 
*** 

0.98 
*** 

-0.12 
*** 

0.15 
*** 

0.34 
*** 

MG 0.01 
-

0.03 

-

0.35 
*** 

-0.25 
*** 

1  
0.21 

*** 

-

0.39 
*** 

0.41 
*** 

-

0.12 
*** 

-

0.12 
*** 

0.61 
*** 

0.10 
*** 

-

0.16 
*** 

-0.21 
*** 

0.04* 

-

0.10 
*** 

-

0.27 
*** 

NDVI 

-
0.09 

*** 

-
0.24 

*** 

-
0.31 

*** 

-0.30 
*** 

0.21 
*** 

1  
-

0.45 
*** 

-
0.27 

*** 

-
0.33 

*** 

-
0.09 

*** 

0.40 
*** 

0.23 
*** 

-
0.85 

*** 

-0.22 
*** 

0.01 

-
0.30 

*** 

-
0.14 

*** 

PR 
0.10 

*** 

0.50 
*** 

0.62 
*** 

0.47 
*** 

-
0.39 

*** 

-0.45 
*** 

1  
0.58 

*** 

0.46 
*** 

-
0.23 

*** 

-0.77 
*** 

-0.32 
*** 

0.41 
*** 

0.41 
*** 

0.00 
0.51 

*** 

0.40 
*** 

PC 
0.09 

*** 

0.44 
*** 

0.50 
*** 

0.32 
*** 

0.41 
*** 

-0.27 
*** 

0.58 
*** 

 1 
0.35 

*** 

-

0.20 
*** 

-0.20 
*** 

-0.23 
*** 

0.28 
*** 

0.30 
*** 

0.01 
0.24 

*** 

0.14 
*** 

RR 
0.18 

*** 

0.25 
*** 

0.12 
*** 

0.22 
*** 

-

0.12 
*** 

-0.33 
*** 

0.46 
*** 

0.35 
*** 

1  
0.15 

*** 

-0.54 
*** 

-0.17 
*** 

0.31 
*** 

0.19 
*** 

-0.02 
0.55 

*** 

0.30 
*** 

RV_I 
0.06 

** 

-

0.19 
*** 

0.06 
** 

-0.04 
* 

-

0.12 
*** 

-0.09 
*** 

-

0.23 
*** 

-

0.20 
*** 

0.15 
*** 

 1 
0.06 

** 
0.01 

0.10 
*** 

-0.03 
-

0.05** 

-

0.04 
* 

-

0.09 
*** 

RV_II 

-

0.09 
*** 

-

0.12 
*** 

-

0.40 
*** 

-0.35 
*** 

0.61 
*** 

0.40 
*** 

-

0.77 
*** 

-

0.20 
*** 

-

0.54 
*** 

0.06 
** 

 1 
0.23 

*** 

-

0.31 
*** 

-0.27 
*** 

-0.00 

-

0.41 
*** 

-

0.19 
*** 

SP 

-

0.24 
*** 

-

0.30 
*** 

-

0.21 
*** 

-0.16 
*** 

0.10 
*** 

0.23 
*** 

-

0.32 
*** 

-

0.23 
*** 

-

0.17 
*** 

0.01 
0.23 

*** 
1  

-

0.24 
*** 

-0.17 
*** 

0.01 

-

0.18 
*** 

-

0.13 
*** 

TGSI 
0.12 

*** 

0.30 
*** 

0.27 
*** 

0.44 
*** 

-
0.16 

*** 

-0.85 
*** 

0.41 
*** 

0.28 
*** 

0.31 
*** 

0.10 
*** 

-0.31 
*** 

-0.24 
*** 

1  
0.39 

*** 
-0.03 

0.27 
*** 

0.22 
*** 

TVDI 
0.13 

*** 

0.25 
*** 

0.44 
*** 

0.98 
*** 

-
0.21 

*** 

-0.22 
*** 

0.41 
*** 

0.30 
*** 

0.19 
*** 

-

0.03 

-0.27 
*** 

-0.17 
*** 

0.39 
*** 

 1 
-0.14 

*** 

0.12 
*** 

0.37 
*** 
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AP 
-

0.02 

-
0.01 

-

0.05 
* 

-
0.12*** 

0.04 
* 

0.01 0.00 0.01 
-

0.02 

-

0.05 
** 

-0.00 0.01 
-

0.03 

-0.14 
*** 

1  0.03 
-

0.01 

SC 
0.16 

*** 

0.27 
*** 

0.07 
*** 

0.15*** 

-

0.10 
*** 

-
0.30*** 

0.51 
*** 

0.24 
*** 

0.55 
*** 

-

0.04 
* 

-
0.41*** 

-0.18 
*** 

0.27 
*** 

0.12 
*** 

0.03 1  
0.23 

*** 

WC 
0.07 

*** 

0.57 
*** 

0.27 
*** 

0.34*** 

-
0.27 

*** 

-0.14 
*** 

0.40 
*** 

0.14 
*** 

0.30 
*** 

-
0.09 

*** 

-0.19 
*** 

-0.13 
*** 

0.22 
*** 

0.37 
*** 

-0.01 
0.23 

*** 
 1 

 

 

3.2 Spatial statistical analysis of the influencing factors on dirt road density 

 

3.2.1 Scale dependence of spatial relationship  

 

Results of the spatial non-stationarity analysis showed that there was a spatial non-stationary 

relationship between dirt road density and independent variables. Changes in spatially non-

stationarity of the relationship between dependent and independent variables vary at a different 

scale. Figure 7 presents the stationary index response to the bandwidth changes of the GWR. 

As shown in Figure 7, the plotted stationary index values against the kernel bandwidth distances 

decline to a certain kernel distance and then become flat. Variables including Normalized 

Difference Vegetation Index, Temperature – Vegetation Dryness Index, terrain slope reached 

to spatially stationary within small spatial distances. These variables turned into stationary 

between 3 km and 4 km. Land use related variables had not only a sharp declining gradient but 

also relatively larger stationary index values. Distance thresholds were found at 10 km for the 

distance to herder’s winter camp, 6 km for the distance to soum and bag centre, 7 km for the 

distance to province centre, and 5 km for the distance to main river variable. Although the 

threshold distances to become stationary vary for the variables, all the independent variables 

had reached a stationary state within 10 km. These different stationary index values suggested 

that independent variables could influence the dirt road density expansion at various spatial 

scales.        

        

3.2.2 Analysis of the influencing factors on dirt road density based on Ordinary Least Square 

regression 

 

Results of the OLS regression models in which the relationship between dirt road density and 

independent variables assumed spatially stationary throughout the study area are shown in 

Table 7. The sub-model (Model 3) with four independent variables were a slightly better fit to 

the data than other models as shown by the higher Adjusted R² and the lower AICc. Adjusted 

R² of the Model 3 was 0.078, and the AICc value was – 3,110.  Model 2 with land-use related 

variables could explain only two percent of the dirt road density expansion. This model (Model 

2) has the lowest Adjusted R² and the highest AICc value (AICc = - 2,977). The six percent of 

the dirt road density expansion in the study area could be explained by natural factors (Model 

1). AICc value of the Model 1 was – 3,079.  

 

All variables in Model 1 and Model 3 were statistically significant for the regression model 

with a 99 % confidence level. In Model 2, two from a total of three variables (distance to 

herders’ winter camp, distance to province centre, distance to soum and bag centre) were 

statistically significant for the regression model. The variable representing herders’ seasonal 
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location was statistically insignificant for Model 2. This variable might have an impact on dirt 

road expansion, but its contribution to the regression model is not as strong as other variables.   

 

 

 

 
Figure 7. Variation in the spatial stationarity index values for (a) natural factors (Normalized 

Difference Vegetation Index (NDVI), Temperature – Vegetation Dryness Index (TVDI), terrain 

slope (SP), and distance to main river (RV_I)) and (b) land use related variables (distance to 

herders’ winter camp (WC), distance to soum and bag centre (SC), distance to province centre 

(PC)). Spatial stationarity index (SI) values estimated by dividing the interquartile range of 

standard error for an independent variable’s GWR coefficients by twice the standard error of 

the coefficient for the same variable in OLS. SI > 1 indicate spatial non-stationarity at a given 

kernel bandwidth in GWR.      
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Table 7. Summary of results for the Ordinary Least Square (OLS) regression. Models fit to 

explore relationship between dirt road density and independent variables (distance to herders’ 

winter camp (WC), Normalized Difference Vegetation Index (NDVI), distance to province 

centre (PC), distance to main rivers (RV_I), terrain slope (SP), distance to soum and bag centre 

(SC), and Temperature - Vegetation Dryness Index (TVDI).  

Variable  Coefficient  Standard error T statistics Probability  VIF 

Model 1 

Intercept  0.151 0.017 8.665 0.000*  

RV_I 0.04 0.01 3.262 0.001* 1.00 

SP -0.319 0.028 -11.240 0.000* 1.02 

TDVI 0.112 0.024 4.679 0.000* 1.02 

Adjusted R²    0.066 

AICc    -3,079.884 

Model 2 

Intercept  0.098 0.020 4.888 0.000*  

WC 0.034 0.022 1.539 0.123 1.066 

PC 0.031 0.011 2.648 0.008* 1.072 

SC 0.085 0.013 6.447 0.000* 1.111 

Adjusted R²    0.027 

AICc    -2,977.522 

Model 3 

Intercept 0.106 0.019 5.561 0.000*  

RV_I 0.043 0.012 3.501 0.000* 1.00 

SP -0.292 0.028 -10.232 0.000* 1.056 

TDVI 0.100 0.024 4.174 0.000* 1.037 

SC 0.071 0.012 5.688 0.000* 1.043 

Adjusted R²    0.078 

AICc    -3,110.087 

 

Global Moran’s I for the residuals were 0.11 (z – score 6.623, p – value 0.000) in Model 1, 0.12 

(z – score 7.34, p – value 0.000) in Model 2, and 0.1 (z – score 5.89, p – value 0.000) in Model 

3. These Moran’s I values indicated that there was a high spatial autocorrelation in the models. 

Given z – scores of the Moran’s I were revealed there was a less than 1% likelihood these 

spatially clustered pattern could be the result of random change.          

 

3.2.3 Analysis of the influencing factors on dirt road density based on GWR 

 

Geographically Weighted Regression (GWR) models in which the relationship between dirt 

road density and independent variables assumed spatially non-stationary were a better fit to the 

data than the Ordinary Least Square regression (OLS) models. A decrease in the Akaike’s 

Information Criterion (AICc) and an increase of the adjusted R² was observed in all GWR 

models. The adjusted R² increased from 0.066 to 0.122 in Model 1, from 0.027 to 0.087 in 

Model 2, and from 0.078 to 0.13 in Model 3. Differences in AICc values between the OLS and 

the GWR were 57.3 in Model 1, 95.54 in Model 2, and 38 in Model 3. Since differences in the 

AICc values between the GWR models and OLS models were more than 3, GWR models were 

considered a significantly better fit to the data. The model summary of the GWR results and its 

comparison with the OLS models were shown in Table 8.  
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Table 8. Model performance comparison between the Geographically Weighted Regression 

(GWR) and the Ordinary Least Square regression (OLS).   

Comparison measure  Model 1 Model 2 Model 3 

OLS GWR OLS GWR OLS GWR 

Adjusted R² 0.066 0.122 0.027 0.087 0.078 0.1308 

AICc -3,079.88 -3,137.18 -2,977.52 -3,073.06 -3,110.08 -3,148.08 

Sigma  0.0166 0.0157 0.01739 0.0163 0.0164 0.0156 

Global Moran’s I 0.11 0.013 0.12 0.020 0.1 0.0017 

 

Local R² values in the models revealed spatial variations through the study area (Fig. 6). Local 

R² values ranged from 0.04 to 0.42 in Model 1, from 0.005 to 0.25 in Model 2, and from 0.03 

to 0.43 in Model 3. The percentage of local models that have R² values below the R² values of 

the corresponding OLS models was 3.12% in Model 1, 2.23% in Model 2, and 6.9% in Model 

3. These regression points with local R² values lower than the corresponding OLS models were 

mainly distributed in areas where all local models fitted poorly to the dataset. Croplands in the 

west side of the Sharyn Gol River and gold mining areas in the upper reach of the Khuiten River 

were underestimated by GWR models compared to OLS models.  

 

Figure 8. Spatial distribution of the local R² values of the GWR models: a) Model 1 fitted to 

the natural factors dataset, b) Model 2 fitted to the land use related variables dataset, and c) 

Model 3 fitted to the combination of the natural and land use related variables dataset. All 

models were computed by the Gaussian kernel weighting function with a fixed distance 

bandwidth of 4 km.       

The calculated Global Moran’s I values for residuals in the GWR models were reduced from 

the same index values in the corresponding OLS models (see Table 8). Figure 9 shows the 

spatial autocorrelation of residuals in the OLS regression and the GWR models identified by 

the Anselin Local Moran’s I statistics. Generally, spatial autocorrelation of the residual’s 

clusters in the GWR models were declined compared to the corresponding OLS models, but 

there were still some areas that are under- or overestimated by all GWR models. These areas 

were mainly found around the settlement centres and near the junction of the Khuiten River and 

the Sharyn Gol River.                
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Figure 9. Spatial autocorrelation of the OLS and the GWR models’ residuals detected by the 

Anselin Local Moran’s I statistics algorithm in Arc GIS Pro 2.9 (p < 0.05). High-High clusters 

indicate spatial autocorrelation of the positive residuals (underestimation), Low-Low clusters 

indicated spatial autocorrelation of the negative residuals (overestimation), Low-High and 

High-Low outliers indicate the point with negative (or positive) residual value is surrounded by 

points with positive (or negative) residual values.  

 

All variables except terrain slope had spatially varying positive and negative regression 

coefficients (Table 9). Regression coefficients of the terrain slope variable in both Model 1 and 

Model 3 were negative. These spatially varying negative and positive coefficients indicate that 

there were spatially non-stationary relationships between dirt road density and independent 

variables (Fig. 7, 8, and 9). Among the independent variables, terrain slope not only had a 

negative association with dirt road density, but also that these associated relationship covers 

relatively larger areas than other independent variables. Generally, the strong negative 
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correlation between dirt road density and terrain slope was found in areas with very little terrain 

slope gradient. 

           

Table 9. Descriptive statistics of the estimated regression coefficients found through GWR 

modelling at the 95% confidence level. Models fit to explore relationship between dirt road 

density and independent variables (distance to herders’ winter camp (WC), distance to province 

centre (PC), distance to main rivers (RV_I), terrain slope (SP), distance to soum and bag centre 

(SC), and Temperature - Vegetation Dryness Index (TVDI)). GWR models were computed by 

the Gaussian kernel weighting function with a fixed distance bandwidth of 4 km. 

Variable  Minimum Q1 Median Q2 Maximum 

Model 1 

INTRCPT -0.540 0.208 0.249 0.306 0.694 

RV_I -0.373 0.131 0.179 0.248 0.432 

SP -0.950 -0.548 -0.443 -0.340 -0.208 

TDVI -0.305 0.304 0.366 0.436 1.067 

Model 2 

INTRCPT -1.840 -1.134 -0.913 -0.571 0.680 

PC -2.358 0.304 0.480 0.659 1.813 

SC -0.567 0.306 0.511 0.696 1.364 

WC -0.676 0.428 0.612 0.801 1.452 

Model 3 

INTRCPT -0.893 -0.389 0.223 0.267 0.448 

RV_I -0.590 0.148 0.207 0.259 0.391 

SP -0.906 -0.484 -0.388 -0.292 -0.172 

TVDI -0.373 0.311 0.375 0.446 0.972 

SC -0.449 0.290 0.395 0.565 1.100 

 

The positive association between dirt road density and proximity to the main river was observed 

at some part of the Sharyn Gol River, the junction of the Sharyn Gol and the Khuiten Gol, and 

the Kharaa River as well as a small part of the Eroo River. The negative association between 

variables mentioned above was found near the Sharyn Gol open pit coal mine and around the 

vegetable planting fields in the down reach of the Sharyn Gol River. Proximity to soum and 

bag centres has significant positive correlation with dirt road density expansion. This 

association was becoming stronger near bag and soum centres. The positive association 

between dirt road density and proximity to province centre was observed in some parts of the 

study area. Although some High-High clusters of the dirt roads shown in Figure 6 were found 

in the herders’ seasonal location, the effect of the herders’ winter camp location on dirt road 

density was significant in relatively small areas.   
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Figure 10. Spatial distribution of the Geographically Weighted Regression coefficients in 

Model 1; a) intercept, b) coefficient for distance to main river, c) coefficient for terrain slope, 

and d) coefficient for Temperature – Vegetation Dryness Index. Model 1 was computed with 

the Gaussian kernel weighting function with a fixed distance bandwidth of 4 km. Coefficient 

estimates are statistically significant at a 95% confidence level.   
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Figure 11. Spatial distribution of the Geographically Weighted Regression coefficients in 

Model 2: a) intercept, b) coefficient for distance to soum and bag centre, c) coefficient for 

distance to province centre, and d) coefficient for distance to herders’ winter camp. The model 

was computed by the Gaussian kernel weighting function with a fixed distance bandwidth of 4 

km. Coefficient estimates are statistically significant at a 95% confidence level. 
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Figure 12. Spatial distribution of the Geographically Weighted Regression coefficients in 

Model 3: a) intercept, b) coefficient for distance to soum and bag centre, c) coefficient for 

Temperature – Vegetation Dryness Index, coefficient for terrain slope, and d) coefficient for 

distance to main river. The model was computed by the Gaussian kernel weighting function 

with a fixed distance bandwidth of 4 km. Coefficient estimates are statistically significant at a 

95% confidence level. 
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4. DISCUSSION 

 

In order to get a better understanding of dirt road-related land degradation, this study carried 

out a geostatistical analysis of dirt road density and its influencing factors at the local level.  

 

The study was carried out in the northern part of Mongolia and the total length of the dirt roads 

defined by this study was 2,998 km, which includes informal dirt roads not included in data 

from public authorities and is derived through satellite image analysis. A high concentration of 

dirt roads could be shown to have existed as clusters in several parts of the study area.  

 

Results of the GWR models indicated that terrain slope plays a significant role in the dirt road 

density. As the terrain became steeper, the dirt road density decreased and vice versa. Proximity 

to soum centre and bag centre was a positive correlation with dirt road density. In other words, 

dirt road density tended to increase near the rural settlement centres. These findings were 

similar to research by Keshkamat et al. (2013) on the relationship between dirt road corridors 

and geographic factors at the national level. Moreover, they found the effect of soil moisture 

on dirt road corridor width. That effect (the wetter the soil, the wider corridor) was revealed in 

a small area.  

 

In this study, the observed correlation between dirt road density and soil moisture (TVDI) was 

mainly positive. It was observed that dirt road density tends to increase when soil gets drier. A 

negative correlation (wetter soil and dirt road density expansion) was found in a relatively 

limited area. Wet soil might influence the increase of dirt road distribution in a particular 

condition.   

 

Although GWR models showed relatively better results than the corresponding OLS models 

(see Table 8), there were some areas where the model was poorly fitted. Several limitations 

related to the nature of the geographic factors in this analysis could reduce the model fit and 

overall stability of models.    

 

The main limitation was a multicollinearity. The research suggested that it is considered as 

multicollinearity if the variance inflation factor value is higher than 7.5 (Qiu et al. 2012) and 

high values (more than 0.7) in the Pearson’s correlation coefficient matrix (Tang et al. 2020). 

As a result of the initial bivariate correlation screening, three insignificant associations could 

be observed between independent variables and the dependent variable and three 

multicollinearities (Pearson’s correlation coefficient values more than 0.7) of the independent 

variables (see Table 6). After removing six variables from the analysis based on initial bivariate 

correlation screening, the remaining ten variables were tested by the variance inflation factor 

diagnose. The variance inflation factor values ranged from 1.23 to 2.26. Although all remaining 

variables met the thresholds suggested by Qiu et al. (2012) and Tang et al. (2020), there were 

found severe local multicollinearity of the independent variables (Fig. 13). Wheeler and 

Tiefelsdorf (2005) stated that such a collinearity situation can emerge in the GWR analysis even 

if it is not seen in global screening.  

 

To reduce the local multicollinearity of the independent variables, a second bivariate correlation 

screening was carried out. The threshold criterium of Pearson’s correlation coefficient value 

was set to 0.5 in the second bivariate correlation screening. After the second bivariate 

correlation screening, three variables were removed from the analysis. Even if multicollinearity 

of the independent variables was reduced by omitting some independent variables from the 

analysis, there was still collinearity in some independent variables. For example, the collinearity 
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problem could be observed in correlation between NDVI and distance to herders’ winter camp 

(Fig 14).           

 

Figure 13. Bivariate scatter plots of pairs of independent variables. The Pearson’s correlation 

coefficients were shown in the upper triangle. CL is distance to cropland, NDVI is Normalized 

Difference Vegetation Index, PC is distance to province centre, RR is distance to railroad, RV_I 

is distance to main river, RV_II is distance to tributary river, SP is terrain slope, SC is distance 

to soum and bag centre, TVDI is Temperature – Vegetation Dryness Index, and WC is distance 

to herders’ winter camp. Scatter plot visualization and the Pearson’s correlation coefficient 

were computed in ArcGIS Pro 2.9.   

In reality, the livelihood of the herders depends highly on grassland quality. Herders tend to 

seek productive grasslands with dense and greener vegetation. This made it difficult to separate 

the herders’ seasonal location factor from the vegetation factors in this analysis. Further 

research into adjusting the approach taken is needed to better address these special local 

characteristics.      

 

Although multicollinearity of the independent variables was reduced by omitting nine 

independent variables, this resulted in other limitations with regards to misspecification. Issues 

caused by misspecification can happen when essential variables that have a significant role in 

the model calibration processes are not included in an analysis (Fotheringham & Sachdeva 

2022).   
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Figure 14. Bivariate scatter plot of the NDVI and distance to herders’ winter camp location 

(WC). 

 

As seen in Figure 8 (especially Fig. 8 b), there were some areas where all GWR models fit very 

poorly. Adjusted R² of these areas ranged from 0.04 to 0.19. These areas are mainly used for 

croplands in terms of land use. The variable representing cropland was omitted from the 

analysis due to severe local multicollinearity with some variables (distance to soum and bag 

centre, distance to province centre and distance to herders’ winter camp). It remains a challenge 

to distinguish the influence of those factors on dirt road density expansion. All soums except 

the Darkhan (province centre) and the Sharyn Gol soum were originally established to develop 

agricultural production (crop and vegetable production). Since some crop fields are located very 

close to the soum centre, they share the same spatial characteristics. In addition to this complex 

situation, it was difficult to explain some of the dirt road outlier densities (3,455 m/km², 5,374 

m/km², and 5,374 m/km²) found in between the Javkhlant soum centre and crop fields (see Fig. 

3b, 3m, and Fig. 5). In other words, those outlier dirt road densities might be explained by a 

combination of circumstances, but not a single land use factor.  

 

Moreover, in the intercept maps (Fig. 10a and 12a) that illustrated the influence of natural 

factors on dirt road density, those areas where the model fitted poorly could be easily detected. 

It might be related to the remaining selected variables as the adjusted variable screening 

processes did not have enough ability to explain the increase in dirt road density in those 

particular areas. In order to understand the relationship between dirt road density and 

independent variables in those areas, further studies to define the effect of omitted variables as 

well as the context effect on model fitting are needed.                                

 

Other signs of misspecification could be observed in maps of the spatial autocorrelation of the 

regression residuals (see Fig. 9). Statistically significant residual clusters (high or low) show 

that there is at least one essential independent variable absent from the model (Gao & Li 2011).   

 

Results of Anselin Local Moran’s I statistics indicated that there were statistically significant 

(p < 0.05) high clusters of dirt roads near the Sharyn Gol open pit coal mining and gold mining 

in the upper reach of the Sharyn Gol River valley (see Fig. 6). The highest dirt road density 

(5,965 m/km²) was observed in and near the Sharyn Gol open pit coal mining area. Results of 

the Pearson’s product-moment correlation test showed a statistically insignificant association 

between dirt road density and distance to mining variables. The variable representing mining 
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was removed from the analysis based on insignificant correlation with the dependent variable. 

As a result, the effect of removing the mining variable was observed in all GWR models results. 

This effect was reflected by poor model fitting (adjusted R² was in the range 0.09-0.19) and 

High-High (i.e., underestimation) residual clusters in both OLS models and GWR models (see 

Fig. 9).  

 

The sources of error in this study should be acknowledged and indicate where further research 

is needed to better adapt GWR approaches to local areas. The process of digitizing dirt roads 

itself could also affect the accuracy of the data and possible semi-automated processes using 

machine learning approaches might help to improve data accuracy and efficiency of this labour-

intensive approach. Dirt roads were digitized from the TGSI maps by visual interpretation. The 

TGSI maps were generated from the Sentinel 2 Level 1C data obtained from ESA (2021). The 

TGSI map used by the base map was generated from Sentinel 2 Level 1C data recorded on 30 

August 2021, and the additional TGSI maps that were used for validation were generated from 

the same satellite data recorded on 5 September 2020, 6 July 2021, 9 September 2021, and 22 

May 2022. In order to accurately digitize dirt roads and reduce possible digitizing errors, two 

dirt road vector datasets from ALAMGC (2021) and Google Earth Pro were used as primary 

reference data. Although a dirt road digitizing process was validated through reference data and 

additional TGSI maps, errors are possible.                

 

Moreover, some variables representing vegetation and soil moisture were generated from 

remote sensing data which was recorded on a particular date. This might be a source of error 

since this study did not consider seasonal variability in soil moisture and vegetation. This was 

partly due to time constraints, but also due to the pioneering character of this study with a focus 

on testing the overall approach first before making suggestions on how to operationalize it.        

 

Furthermore, only dirt roads created by vehicles were considered in this study. The intensity of 

dirt road utilization and dynamic characteristics (newly created or abandoned) of the dirt roads 

were not considered and should be taken into account in future studies.  

 

Finally future studies that focus on dirt road propagation modelling at the local level need to 

consider the potential multicollinearity and misspecification problems described above.    

 

 

5. CONCLUSIONS 

 

Mongolia is the 19th largest country in the world and 76.9% of the total land area has been 

affected by desertification (Baasandai 2020). Uncontrolled dirt roads are one of the main 

reasons for land degradation in Mongolia (Ochirbat 2013). Due to insufficient paved road 

supply, poor economic capacity to construct paved roads, and the vast territory, dirt roads play 

an essential role in the Mongolian transportation system. Detecting and registering temporary 

dirt roads in the official database is difficult due to the rapid increase of dirt roads in this large 

country (Dashpurev et al. 2020).       

 

This study investigated dirt road distribution and the relationship between geographical factors 

and dirt road densities at the local level in the northern part of Mongolia. The study area covered 

0.29% of the total land territory in Mongolia and the total length of dirt roads was 2,998 km. 

This means that approximately 7.6% of the currently available estimation of dirt roads in 

Mongolia were allocated to this 0.29% of the total land territory. The approach of analysing 

satellite images to identify dirt roads not accounted for in public datasets proved valuable to 
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gain a better understanding of the full dimension of dirt road distribution. The analysis was 

particularly important for understanding the local dimensions and characteristics that contribute 

to the informal part of dirt road expansion. The spatial autocorrelation analysis conducted in 

this study showed that a high concentration of dirt road clusters existed in several distinct parts 

of the study area. This finding indicates that the roads significantly contributed to land 

degradation in these areas.  

 

It is necessary to take urgent management measures to mitigate the impact of dirt roads on the 

surrounding environment in areas that are highly affected by dirt roads. Establishing at least 

one main gravel road might, for example, help to mitigate the informal expansion of dirt roads.  

 

The effect of geographical factors on an increase in dirt road density varied throughout the study 

area. Proximity to rural settlement centres, especially soum and bag centres, and terrain slopes 

have a significant influence on dirt road expansion. Due to several issues related to local 

multicollinearity and model misspecification, the results of this study were not sufficient to 

provide a more accurate conclusion regarding the main factors that can exacerbate an increase 

in dirt road expansion at the local level.     

 

The GWR model might have some shortcomings in the study of dirt road density at the local 

level due to local multicollinearity. Special care also needs to be taken to diligently pre-process 

the data that goes into the model, which was not always possible in this study due to time 

constraints. Future studies could conduct a comparative analysis of the GWR modelling using 

the same variables but in different locations to confirm if the GWR model is suitable for 

predicting dirt road density expansion at the local level. 

 

This study demonstrated that a geostatistical approach to analysing dirt road distribution and 

their natural and human environments merits further investigation. The scope of the project was 

too limited to derive more advanced results and demonstrated some limitations in some of the 

commonly used regression models. However, preliminary results from this study revealed some 

valuable findings that show the impact of dirt roads in relation to land degradation. Some 

promising aspects of the work are, however, already useful to inform policy making and 

regional planning efforts with regards to where most urgent interventions are needed and to 

which geographical factors contribute to dirt road expansion at a local level.  
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