Final Project 2015



unuftp.is

## BIOECONOMIC ANALYSIS: A CASE STUDY OF THE INDUSTRIAL PELAGIC FISHERIES IN CAPE VERDE

Anisio Fernandes Oliveira Évora National Institute for Fisheries Development Cape Verde <u>anisio.evora@indp.gov.cv</u>

Supervisor:

Daði Már Kristófersson University of Iceland, Iceland <u>dmk@hi.is</u>

#### ABSTRACT

This paper develops a bioeconomic model to identify optimal management of the pelagic fisheries, applied to the industrial pelagic fisheries of Cape Verde. The result of the analysis of the period 2003 to 2012 show very high fluctuation in the net benefits of the fishery. The net benefits were mostly negative due to excessive fishing effort which results in high cost, while the total revenue remains weak. The current (2012) fishery reference situation indicates a slightly excessive fishing effort. Hence, the fisheries exist at a stage that requires care in terms of management with bioeconomic criteria at levels very close the biological equilibrium (BE). Despite this, it is known that adequate fishery management is necessary to achieve sustainable fishing, so this current state represents an opportunity for management. By analysing this scenario, we emphasise biological and economic outcomes. To achieve maximum sustainable profits, around 111,602 thousand CVE annually equal to 22% of the total revenue, the fishing effort must be reduced from 6,264 to 3,752 days at sea in a long-run sustainable option. However, it must only reduce from 6,264 to 5,042 days at sea to achieve the maximum sustainable profits around 32,827 thousand CVE annually, equal to 6% of the total revenue, in a short-run sustainable option. The fundamental problem of economic inefficiency in fisheries, the called common property problem, may be seen to be caused by inadequate property rights in the underlying natural resources. Due to this lack of property rights, trades in the natural resources cannot occur. As a result, markets cannot form and, consequently, there are no market forces to guide behaviour to the common good. All potential economic rents from the fishing activity are fritted away by investment in excessive fishing capital and fishing effort. Moreover, this economic waste is generally accompanied by an unjustifiable reduction in and, sometimes, even decimation of the biological capital, the fish stocks. However, the analysis shows that the main source of improvement of the fishery management in this case of study is linked to the implementation of the ITQs to the harvest sector, to correct this management failure, and reduce the fishing efforts and rebuild the fish

This paper should be cited as: Évora, A.F.O. 2016. *Bioeconomic analysis: A case study of the industrial pelagic fisheries in Cape Verde*. United Nations University Fisheries Training Programme, Iceland (final project). http://www.unuftp.is/static/fellows/document/evora15prf.pdf stock. ITQs have been introduced in numerous fisheries around the world, apparently generally, even consistently with good economic results.

#### ACRONYMS

| ACOPESCA | - | Competent Authority for Fisheries Surveillance    |
|----------|---|---------------------------------------------------|
| BE       | - | Bioeconomic Equilibrium                           |
| CPUE     | - | Catch Per Unit Effort                             |
| CVE      | - | Cape Verde Currency                               |
| DGP      | - | General Directory of Fisheries                    |
| EEZ      | - | Economic Exclusive Zone                           |
| EMEY     | - | Effort at Static Maximum Economic Yield           |
| EMSY     |   | Effort at Maximum Sustainable Yield               |
| FAO      | - | Food and Agriculture Organization                 |
| GDP      | - | Gross Domestic Production                         |
| INDP     | - | National Institute for Fishing Development        |
| INE CV   | - | National Institute of Statistics Cape Verde       |
| ITQs     | - | Individual Transferable Quota System              |
| MCS      | - | Monitoring Control and Surveillance               |
| MEY      | - | Maximum Economic Yield                            |
| MSOC     | - | Maritime Security Operations Center               |
| MSY      | - | Maximum Sustainable Yield                         |
| NPV      | - | Net Present Value                                 |
| PRBFMs   | - | Property Rights Based Fisheries Management System |
| TAC      | - | Total Allowed Catch                               |
| TURF     | - | Territorial User Rights in Fisheries              |
| VMS      | - | Vessel Monitoring Systems                         |

## TABLE OF CONTENTS

| LIST OF FIGURES                                                                 |
|---------------------------------------------------------------------------------|
| LIST OF TABLES                                                                  |
| 1 INTRODUCTION                                                                  |
| 2 OVERVIEW OF FISHING SECTOR IN CAPE VERDE                                      |
| 2.1 The importance of the fisheries and its governance                          |
| 2.2 Flow of fisheries value chain                                               |
| 2.3 Current pelagic fishery management                                          |
| 2.4 Pelagic fishery production                                                  |
| 3 FISHERIES AND BIOECONOMIC MODELS 14                                           |
| 3.1 The biomass growth function                                                 |
| 3.2 The harvesting function                                                     |
| 3.3 The cost and net benefits function                                          |
| 3.4 Fishery reference points and optimisation                                   |
| 3.4.1 Static reference points                                                   |
| 3.5 Static reference points for the maximum sustainable yield (MSY), maximum    |
| economic yield19                                                                |
| 3.5.1 The Static model for long run and short run sustainable fisheries         |
| 3.6 Sensitivity Analysis                                                        |
| 4 DATA SOURCES                                                                  |
| 4.1 Biological data                                                             |
| 4.2 Effort data                                                                 |
| 4.3 Economic data                                                               |
| 4.4 Estimation of parameters                                                    |
| 4.4.1 Biological parameters                                                     |
| 4.4.2 Economic parameters                                                       |
| 5 RESULTS                                                                       |
| 5.1 The static model of the fishery                                             |
| 5.1.1 The short-run sustainable fishery policy                                  |
| 5.1.2 The long-run sustainable fishery                                          |
| 5.2 Sensitivity analysis                                                        |
| 5.2.1 Sensitivity analysis of the Short-run sustainable fisheries               |
| 5.2.2 Sensitivity analysis of the long-run sustainable fisheries                |
| 6 DISCUSSION                                                                    |
| 6.1 Sustainable fishery                                                         |
| 6.2 Management solutions                                                        |
| 7 CONCLUSION                                                                    |
| 8 RECOMMENDATIONS                                                               |
| ACKNOWLEDGEMENTS                                                                |
| LIST OF REFERENCES                                                              |
| APPENDICES                                                                      |
| Appendix 1: Basic bioeconomic data and calculations for the period 2003 to 2012 |
| Appendix 2: Linear regression Calculations                                      |
| Appendix 3: Short-run Sustainable Relationship                                  |
| Appendix 4: Long-run Sustainable Relationship44                                 |

## LIST OF FIGURES

| Figure 1: The approximate area of Cape Verde Exclusive Economic Zone (EEZ)                      | 8  |
|-------------------------------------------------------------------------------------------------|----|
| Figure 2: Organic structure of fishery sector in Cape Verde                                     | 9  |
| Figure 3: Artisanal fishing fleet (upper and lower right panel) and Industrial fishing fleet    |    |
| (upper and lower left panel) in Cape Verde                                                      | 10 |
| Figure 4: Volume of caught marine species in Cape Verde from 1994-2014                          | 11 |
| Figure 5: Flow of fisheries value chain in Cape Verde                                           | 12 |
| Figure 6: Pelagic fish value and quantity caught in Cape Verde from 2003-2014                   | 13 |
| Figure 7: Pelagic fishery value and average price (Cape Verde currency) from 2003-2014          |    |
| (FRESCOMAR, 2014; INDP, 2014)                                                                   | 13 |
| Figure 8: Relationship between catch per unit of effort, effort and total harvest of industrial |    |
| fleet in Cape Verde                                                                             | 14 |
| Figure 9: Short-run sustainable fishery model for Cape Verde (industrial pelagic fisheries)     |    |
| based on modified Gordon-Schaefer specifications                                                | 25 |
| Figure 10: Long-run sustainable fishery model for Cape Verde (industrial pelagic fisheries)     |    |
| based on modified Gordon-Schaefer specifications                                                | 27 |
| Figure 11: Sensitivity analysis, short-run sustainable fisheries                                | 28 |
| Figure 12: Sensitivity analysis, long-run sustainable fisheries                                 | 30 |

## LIST OF TABLES

| Table 1: Maximum sustainable yield for some pelagics species with better commercial value       |
|-------------------------------------------------------------------------------------------------|
| in Cape Verde (INDP, 2014)                                                                      |
| Table 2: Biological parameters estimated for the Small pelagic fishery in Cape Verde 22         |
| Table 3: Biological parameters estimated for the tuna fishery in Cape Verde                     |
| Table 4: Biological parameters estimated for the other fish category in Cape Verde              |
| Table 5: Annual fixed cost estimates associated with each industrial vessel                     |
| Table 6: Variable cost per year and per fishing day estimated, associated with each fishing     |
| vessel                                                                                          |
| Table 7: Short-run sustainable equilibrium and current (2012) reference point for industrial    |
| pelagic fisheries                                                                               |
| Table 8: Different levels of fishing effort based in historical data (2003-2012) comparing with |
| net benefits (1000 CVE) each year26                                                             |
| Table 9: Long-run sustainable equilibrium and current (2012) reference point for industrial     |
| pelagic fisheries                                                                               |
| Table 10: Sensitivity analysis: changing fish price of the current (2012) fishery reference     |
| situation, keeping the costs in a short-run sustainable relationship                            |
| Table 11: Sensitivity analysis: changing variable costs of the current (2012) fishery reference |
| situation, keeping the fish price in a short-run sustainable relationship                       |
| Table 12: Sensitivity analysis: changing fish price of the current (2012) fishery reference     |
| situation, keeping the costs in a long-run sustainable relationship                             |
| Table 13: Sensitivity analysis: changing total costs of the current (2012) fishery reference    |
| situation, keeping the fish price in a long-run sustainable relationship                        |
|                                                                                                 |

## **1 INTRODUCTION**

Fisheries management is surrounded by risk and uncertainty. Measuring the biological and economic impacts of management measures adopted in fisheries is important for policy makers to ensure the sustainability of the activity. Maximising fisheries harvest while ensuring a self-sustaining stock is not an easy task. At the same time, it is difficult to regulate fishing effort for several reasons, among which Sumaila (1999) indicates: "(i) renewable resources are often "common property"; (ii) different fishing vessels affect stocks differently; (iii) the catch of juveniles or mature fish can have important consequences for those species which are long-lived; and (iv) the capital embodied in the exploitation is often non-malleable."

Policy makers are confronted with the task of maximizing production and maintaining employment on one hand and avoiding the risk of industry collapse in the near future due to resource depletion on the other. Measures of control are divided in two categories: the input control (including exclusive areas, seasonal closing, effort allocation, etc.) and output control (concerning the catches and their size and includes for instance TACs and individual quota). Management of fisheries requires the integration of resource biology and ecology with the economic factors that determine fisher's behavior in space and time (Anderson and Seijo, 2010).

A fishery is not a static phenomenon, human interventions or natural events that happen in one period can have repercussions in the future. Thus, independent of fishing, stocks can fluctuate in the short and long run because of natural factors. Human actions can have lasting effects on both the stock and fishing fleet that will affect the ability to control harvest in the future. However, the stock will increase if recruitment of new individuals and the growth of existing individuals add more to biomass than is removed by natural and fishing mortality.

The pelagic fisheries in Cape Verde have significant economic and social impacts. They provide an important source of protein in the diet and are important to food security for the people. Additionally, the value of catches and the number of fishermen employed within the industry also play an important role in the economy of Cape Verdian society. The pelagic fishery in Cape Verde are divided in small pelagic and big pelagic. The most abundant species within the small pelagic with best commercial value are black mackerel (Decapterus macarellus), scad mackerel (Decapterus punctatus), bigeye scad (Selar crumenophthalmus), blackspot picarel (Spicara melanurus), blue runner (Caranx crysos), pompano (Trachinotus ovatus), and the African moonfish (Selene dorsalis). All these small pelagic species can be found at 30-200 m depth and usually form fish schools at the surface (INDP, 2014). The total catch of these small pelagic species has fluctuated over the last 10 years, and in the last two years the total catch of small pelagics has been relatively low in comparison with the previous years, mainly black mackerel, which is economically important in this group. The big pelagics are basically skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus), frigate tuna (Auxis thazard), sawfish (Acanthocybium solandri), Atlantic little tunny (Euthynnus alleteratus) and gilthead bream (Coryphaena hippurus).

Detailed historical economic data on the fisheries resources in Cape Verde are not readily available. However, there are some scientific papers and statistical reports that briefly explain and give some details, though few of these have focused on the economics of the fishery. As a result, it has been difficult to determine financial profitability and economic viability of the fishery. What is clear is that ship owners are faced with financial and technical problems since

most of the fishing vessels are poorly equipped and old-fashioned and their operation is costly (INDP, 2014).

Fisheries policy and management in Cape Verde is mainly based on biological analysis such as stock assessment, mostly ignoring economic aspects of the sector. The biological analysis is quite important because it allows for a discussion of the interaction between effort harvest and stock size. Analysis of the sustainability of the pelagic stocks and how they react to fishing pressure requires a deep understanding of the population dynamics and external human and environmental factors. How will the stock of fish change over time with and without fishing? What is the harvest production function? What is the relationship between the inputs used and the amount of fish that will be harvested from a given stock size? What level of effort will be produced under specific circumstances. Bioeconomic models seek to answer these complex questions. Commercial fishing is an activity that is undertaken for profit. Incorporation of information about sales price, cost of fishing and how the profit level will vary with output, allows for a model that can help predict likely level of effort and outputs (Anderson and Seijo, 2010).

In addition to being both a biological and a food-supply resource, the erosion and subsequent collapse of fisheries pose an immediate economic threat to fishers and others whose livelihoods depend on fishing. In order to avoid this tragedy, establishing biologically and economically sustainable fisheries is clearly desirable and necessary, so, the biological based management options should be coupled with economic management options from the fishery so as to know the interactions between the biology and economics within the fishery (Anderson and Seijo, 2010). Therefore, this study seeks to use bioeconomic modelling to find optimal management solutions for the industrial pelagic fishery in Cape Verde. Ineffective management of fisheries is likely to result in the depletion of the shared resource, meaning unrecoverable ecological and economic losses.

The main objective of this paper is, therefore, to get a biological and economic understanding of the industrial pelagic fisheries in order to determine the most efficient management and to optimize the fisheries policy for such fisheries in Cape Verde.

Specifics objectives of this project are:

- a) Assess the fishery management options (biological related) in Cape Verde
- b) Assess the potential benefits of the pelagic fishery in Cape Verde
- c) Assess and determine the optimal level of effort, in order to obtain the optimal utilization of a fish stocks, and maximize the net present value (NPV) of harvest for the industrial pelagic fishery,
- d) Suggest a policy for sustainable fishing

The results of this analysis will hopefully represent a step in the direction of developing the appropriate management for the industrial pelagic fishery, particularly the improvement of property rights, and maximizing the utilization of the stock.

## 2 OVERVIEW OF FISHING SECTOR IN CAPE VERDE

The Archipelago of Cape Verde (Figure 1) is approximately 500 km off the coast of Senegal, West Africa. It consists of ten islands and eight uninhabited islets with a total population of around 500,000 people (National Institute of Statistics of Cape Verde - INE CV).

Since the islands are of volcanic origin and emerge from an abysmal pit with an average depth of 4,000 km, the continental shelf (of less than 200 m depth) is fairly narrow which may not be suitable as breeding grounds for many marine fish.



Figure 1: The approximate area of Cape Verde Exclusive Economic Zone (EEZ)

The sea around Cape Verde is thermally stratified with a thermocline between 40 and 70 m. The average annual temperature is about 24°C. The total surface of the Economic Exclusive Zone (EEZ) is 734,265 km<sup>2</sup>, the potential for fishing is around 36,000-44,000 tons, and the main fishing resources are small pelagic (mackerels), tunas (big eye, skipjack) demersal species (grouper, etc) and lobsters (Seijo *et al.*, 1998; INDP, 2014).

## 2.1 The importance of the fisheries and its governance

As in many developing countries, the sector of Cape Verde is not only a vital part of the country's goal to engage in world trade but serves a vital cultural and societal role in the communities. Though the fisheries sector contributes only about 1% for the national GDP, it is considered an important source of income still playing a decisive role in the diet of the population as main source of protein and important to food security for the people and contributing to the generation of wealth through exports. The per capita consumption of fish is around 26 kg and the fisheries sector are seen as an important factor to strengthen the national economy.

The governance of the fishery sector in Cape Verde is by the Minister of Infrastructure and Maritime Economy, National Council of Fisheries and Marine Resources, Marine Resources Directorate-General, INDP, and ACOPESCA. Each element of this structure is responsible for maintaining a good institutional framework for management and enforcement. The Director-General of Marine Resources is responsible for formulating fisheries policy, issuing laws and licensing of fishing activities. The National Institute for Fishing Development is responsible for fisheries research and issuing recommendations for fisheries management. ACOPESCA is the competent authority for fisheries surveillance, recently created for monitoring and ensuring compliance with the rules on health, legality and quality of fisheries and fishery products. Finally, the National Council of Fisheries and Marine Resources holds biennial meetings for

discussing the future of the fisheries management. An illustration of the fisheries management structure in Cape Verde is pictured in Figure 2.



Figure 2: Organic structure of fishery sector in Cape Verde

There are also other institutions, for instance, the Maritime and Port Agency, which are responsible for inspection and registration of fishing vessels and coastal surveillance. The Coast Guard is responsible for supervision of the Economic Exclusive Zone.

Fisheries activities are regulated through property rights and a licensing system. The licenses are issued by the General Directory of Fisheries (DGP). For instance, in order for semiindustrial and industrial vessels to get a license, they need to have onboard navigational aid and depth sounders devices, in addition to the electronic VMS (Vessel Monitoring Systems) and logbooks, property title of fishing vessel, and a sanitary certificate issued by the competent authority. For artisanal fishing, only a property title of the fishing boat is required for licensure.

In 2011, the Maritime Security Operations Center (MSOC) was established and a new vessel with more capacity and speed was acquired to patrol the EEZ. In 2013 the Fishing Inspector was created. The Fishing Inspector works with the Coast Guard and Maritime and Port Agency to protect the Economic Exclusive Zone against illegal fishing and minimize the difficulty of surveillance of the EEZ. The enforcement activity include inspection offshore, inshore and on landings ports to ensure the compliance the fishery management and enforcement rules.

The fishing in offshore areas is still a challenge and there is a lack of strong law enforcement measures against the illegal fishing from foreign countries. The fishing sector continues to have problems, such as lack of communication between institutions of the sector, evidence of overfishing of some species, lack of a social security system for fishing operators and difficult access to banking credit for fishing, etc.

According to an INDP Census (2011), the fishery sector is divided into two parts: artisanal and industrial/semi-industrial (Figure 3), and overall employs in the producing and marketing around 5,784 fishermen and fishmongers. The artisanal sub-sector consists of a multi-species and multi-gear fleet numbering approximately 3,717 registered fishers operating over 1,239 registered boats, mainly open boats of wood and fiberglass ranging from 4-8 m in length, with 8-25 HP outboard engines. It employs around 987 fishmongers. The artisanal fishing takes place close to the coast and the main fishing gear is hand lines for demersal fish and tuna, and purse seine for small pelagic. Some of artisanal fleet boats also use beach seines mainly for catching

juvenile mackerel or bigeye scad for bait, which are then used to catch tuna. It is usually the wives of fishermen who market the fish. At the areas where the fishing communities are dispersed, cars are used to transport the fish to the customers. There are also local sales made walking from door to door.

The semi-industrial/industrial fishing fleet consists of 111 vessels varying in size from 8 to 25 m with 40-510 HP engines, and employs around 1,080 fishermen. The technological facilities available vary according to the type of vessel. Most of these vessels are minimally equipped with navigational aid and echo sounders devices and in some cases sonar to detect fish schools.

Industrial vessels often go out ten times per month on fishing trips lasting roughly two days, usually operate 11 months per year, with one month reserved for maintenance of the ship. The production is mainly for processing and export. The main species caught are tunas, small pelagic, demersal fish and lobsters. Purse seine, hand line, and long line fishing are the most important gear used by these fishing vessels.

Labor remuneration for fishermen is based on a catch share system, not on fixed wage, both in the artisanal and industrial sectors. The crew receives a share in the harvest value, after deduction of the operational costs (Variable Cost per fishing day) of the vessel on this harvest. Boat types are pictured in Figure 3.



Figure 3: Artisanal fishing fleet (upper and lower right panel) and Industrial fishing fleet (upper and lower left panel) in Cape Verde

The total landings from the artisanal and semi-industrial/industrial fleet in the last years increased from around 8,000 tons in 1994 to up to around 14,000 tons 14,000 tons in 2014 (INDP, 2014). The estimated marine harvest from the industrial fleet is large relative to the artisanal fleet (Figure 4) in the last years. The main reason for this growth is related to an increased interest after 2012 in the processing of small tuna (*Auxis thazard*) for canning. Before this, the fishing fleet did not fish this species in great quantity. Thus, the industrial fleet's contribution is arguably more valuable to the country's economy as it earns valuable foreign exchange for the country each year.



Figure 4: Volume of caught marine species in Cape Verde from 1994-2014

#### 2.2 Flow of fisheries value chain

As stated above, the pelagic resources can be exploited by the industrial or artisanal fleet in Cape Verde. However, the flow of pelagic value chain depends on method of harvest (Figure 5). The pelagic fish from the industrial fleet is either sold directly to the fish processing factory to be canned and sold to the retailers or export or sold directly in the fish markets to the final consumers. For instance, the mackerels, skipjack tuna, yellowfin tuna, bigeye tuna and frigate tuna is either sold fresh, salted, or canned as one of the main raw-material, in the local market. It is also exported by the canning industry, to the European Union markets mainly, Spain, Portugal, Italy, etc. The others pelagic species are exclusively sold in the local fish markets to restaurants or directly to the final consumers.

The fish from the artisanal fleet is sold to the fish markets, restaurants, or directly to the final consumers. Occasionally the fish is sold salted. The processing factories never buy fish from the artisanal fleet, because of European Union rules on quality of fish that is going to be exported to the European market. Frequently the fish from the artisanal fleet does not have the required quality (Econstor, 2012).

Nowadays, only lobsters from industrial fleet can be exported directly to the European market. It must, however, be landed in a landing ports certified for the European Union. Lobsters caught from the artisanal fleet are also sold in the fish markets, at restaurants or directly to the final consumers.



Figure 5: Flow of fisheries value chain in Cape Verde

## 2.3 Current pelagic fishery management

The management of pelagic fishery in Cape Verde is based on biological theories, which seem to be quite effective (INDP, 2014). There is a temporary closure for black mackerel which is from August 1 until September 30. There are also minimum sizes for catch and selling i.e., black mackerel 18 cm fork length, blackspot picarel 17 cm fork length, chicharro 16 cm fork length. The small pelagics are reserved to the national fleet, and foreign vessels are not allowed to catch those species. It is prohibited to catch, land and market yellowfin or bigeye tuna weighing less than 3.2 kg.

The 12-nautical mile territorial waters are reserved exclusively for the national fishing fleet, and area within three nautical miles is reserved exclusively to artisanal fishing. The maximum sustainable yield for some pelagic species was defined in 2013 and is as shown in Table 1.

| Table 1:   | Maximum    | sustainable | yield for | some | pelagics | species | with | better | commerc | ial |
|------------|------------|-------------|-----------|------|----------|---------|------|--------|---------|-----|
| value in ( | Cape Verde | (INDP, 2014 | )         |      |          |         |      |        |         |     |

| RESOURCES                               | MAXIMUM SUSTAINABLE YIELD (MSY-Tons) |
|-----------------------------------------|--------------------------------------|
| Black Macharels (Decapterus macarellus) | 2,500 - 2,700                        |
| Bigeye Scad (Selar crumenophthalmus)    | 1,000                                |
| Blackspot Picarel (Spicara melanurus)   | 300                                  |
| Tunas (all species)                     | 25,000                               |

There are also some fishing gear and techniques restrictions such as, fishing with dynamite, use of autonomous means of artificial respiration (bottles and compressors) and the use dredgers is prohibited. A minimum mesh size of in 30 mm is set for gillnets.

## 2.4 Pelagic fishery production

The pelagic fish represents the most important export marine product from Cape Verde. Its economic and social impact has already been mentioned. The highest total annual landings of small pelagic was 5 thousand tonnes contributing 50% to all marine fish landed in 2006. However, the landings decreased suddenly in 2014, the total catch was around 3,092 tonnes representing only 22% of the all marine fish landed in 2014. On the other hand, the highest total

annual landings record for tunas, (mainly a small tuna called frigate tuna) was around 8 thousand tonnes in 2014, as shown in Figure 6.



Figure 6: Pelagic fish value and quantity caught in Cape Verde from 2003-2014

As shown in Figure 7 below, the price of pelagic fishery has varied significantly from 2002-2014. The price in the fish markets depending on the catch amount. The small pelagic may be sold with a varying overall price over time between 50 CVE to 130 CVE. Today the canning industry buys mackerels for a fixed price of 35 CVE. The tunas are usually sold per kilo with an overall price varying over time between 80 CVE to 170 CVE. The canning industry have also, a fixed price for small tuna (frigate tuna) of 50 CVE. Fluctuations in catch as related to fishing effort in Cape Verde between 2002-2014 are shown in Figure 8.



Figure 7: Pelagic fishery value and average price (Cape Verde currency) from 2003-2014 (FRESCOMAR, 2014; INDP, 2014)



Figure 8: Relationship between catch per unit of effort, effort and total harvest of industrial fleet in Cape Verde

## **3** FISHERIES AND BIOECONOMIC MODELS

Successful fisheries management must take into account both biological and economic aspects. For this reason, bioeconomic models are employed to provide directions for fishery management (Defeo and Seijo, 1999; Ulrich *et al.*, 2002; Lleonart *et al.*, 2003; Maynou *et al.*, 2006; Mattos *et al.*, 2006; Anderson and Seijo, 2010). Biological analysis allows for a discussion of the interactions between effort, harvest, and stock size. But in order to understand the operation of a commercial fishery, it is necessary to understand what level of effort will actually be produced under specified circumstances. Commercial fishing is an activity that is for the most part undertaken for profit. If you introduce information about price, cost and how the profit level will vary with output, it is possible to build a model that can help predict likely level of effort and outputs.

A fishery can be thought of as a stock or stocks of fish and the enterprises that have the potential to exploit them. It can be a very simple system where a fleet of similar vessels from a single port exploits a single stock of fish. Or it can be more complicated where fleets from different ports using differing technologies harvest fish from several stocks that are ecologically related. This chapter has been adapted from the lectures by Prof. Ragnar Arnason in the specialization course in Fisheries Policy and Planning. However, the fisheries model used in this analysis of the Cape Verde industrial pelagic fishery is based on the work of Gordon (1954) and Schaefer (1957) (Anderson and Seijo, 2010) who developed a basic bio-economic model for fisheries management. This model has been found to be adequate for many fisheries around the world.

The main elements of this model are (i) a biomass growth function which represents the biology of the model, (ii) a harvest function which constitutes the link between the biological and economic part of the model, and (iii) a fisheries profit function which represents the economic part. However, for prediction of the maximum sustainable yield (MSY) of the industrial pelagic fishery, we apply the "surplus production models" (Graham, 1935; Anderson 1979; Anderson and Seijo, 2010).

This approach was selected for the following reasons: (i) the pelagic resources data in Cape Verde is very limited and do not support an advanced bio-economic model, (ii) the model developed here can later be extended and refined when more and better data becomes available. Particularly, we apply the Gordon-Schaefer model to maximize the long run profits from the resource.

More precisely the model is as follow:

$$\dot{x} = G(x) - Y$$
 (Net Biomass growth) (1)

Where x represents biomass,  $\dot{x}$  is biomass growth and Y is harvest. The function G(x) is natural biomass growth.

$$Y = y(e, x)$$
 (Harvesting function) (2)

The volume of harvest is taken to depend positively on fishing effort as well as the size of the biomass to which the fishing is applied.

$$\pi = py(e, x) - C(e) \text{ (Net Benefits or Profit function)}$$
(3)

Where p represents the price of fish landing and C(e) is the cost function of fishing effort. The profit function depends on the fish price, the sustainable fish yield and the fishing operation costs. The fishing costs depend on the use of economic inputs, which is the fishing effort can represent the profit function equation.

Thus, the above model comprises three elementary functions: the natural growth function G(x), the harvesting function y(e, x) and the cost function C(e). And those models can be explained as follows.

#### 3.1 The biomass growth function

The fish stock measured in terms of biomass is the natural capital of the system. The focus of interest is its ability to reproduce and provide new recruits, the growth rate of individuals, the natural mortality rate, and the rate of fishing mortality. Thus, the stock will increase if recruitment of new individuals and the growth of existing individuals add more to biomass than is removed by natural and fishing mortality. Populations of organisms cannot grow infinitely; the growth of organisms is constrained by environmental conditions and food availability. It has been shown that populations of organisms strive to stabilize at the highest possible population size for a given set of conditions (Anderson and Seijo, 2010). Marginal growth of a population increases when the size of the population decreases, and marginal growth decreases when the size of the population increases, this may be called density dependent growth. Biological growth functions of such populations may be expressed as follows:

$$G(X) = rX - SX^2 \tag{4}$$

Where X is population size, r is the intrinsic growth rate of the population and S is the ratio of the growth rate to carrying capacity, which is a measure of density dependent mortality. This is the parabolic equation also referred to as "Verhults equation" or the logistic growth equation (Anderson and Seijo, 2010).

Specifically the parameter, S, can be expressed in terms of environmental carrying capacity, k the largest size that can be achieved given food supplies, habitat, etc. and intrinsic growth, as:

$$s = -\frac{r}{k} \tag{5}$$

From equation (5) substitute S in equation (4), we get the most commonly used expression of the logistic growth equation and equation (4) can be rewritten as:

$$G(X) = rX\left(1 - \frac{X}{k}\right) \tag{6}$$

Where the parameter r represents the intrinsic growth rate, the rate at which the stock would typically grow with no external effects, X is population biomass, the parameter k represents the carrying capacity of the environment, the largest size that can be achieved given food supplies, habitat, etc.

The first term in the equation, rX, shows that growth is proportional to stock size, but the second term,  $\left(1 - \frac{x}{k}\right)$  adds the complexity that growth decreases with stock density,  $\frac{x}{k}$ , and when the stock size equals the carrying capacity, growth will fall to zero. The combined effect is an inverted U-shaped growth curve where growth initially increases with stock size but ultimately falls to zero. The maximum growth rate can be found by taking the first derivative of Equation 6, setting it equal to zero, and solving for X. Ignoring the time subscripts, we have:

$$r - \frac{2rX}{k} = 0 \tag{7}$$

Solving for X results in:

$$X_{MSY} = \frac{k}{2} \tag{8}$$

This shows that at lower stock sizes growth varies directly with stock size because recruitment increases, and the more individuals there are in the stock, the greater will be the effect on individual growth. After a certain point, however, the stock will begin pushing against the environmental carrying capacity, which will reduce recruitment and individual growth and increase natural mortality. In this range, net growth is inversely proportional to stock size and eventually falls to zero.

#### **3.2** The harvest function

Harvest is the result of deliberative actions by participants in the fishery. Consider now how harvest will affect the population dynamics of fish stock. Thus, the periodic change in stock size with harvest can be represented as follows:

$$X_{t+1} = X_t + G(X_t) - Harvest_t$$
(9)

Meaning that the stock size next year will be equal to stock size this year plus growth this year minus catch this year. In this case, the stock will reach an equilibrium where  $G(X_t) = Harvest_t$ .

To understand fisheries utilization, it is necessary to understand what goes into decisions to fish or not to fish. Assuming that each unit of effort harvest equals the amount from the targeted stock and an equilibrium situation where catch equals natural growth, the equilibrium stock size (x) may be expressed in terms of carrying capacity (k), catchability coefficient (q) and fishing effort (e). For the harvesting model in accordance to the generalized (Schaefer 1954) (Anderson and Seijo, 2010) version, may represent short-run yield:

$$Y_t = q E_t X_t \tag{10}$$

Where q is the catchability coefficient and  $E_t$  is fishing effort. The catchability coefficient is the embodiment of the technology that is used to harvest fish. The catchability coefficient changes over time due to technological and management changes.

Generalized Schaefer:

$$Y(x,e) = qE^{\alpha} X^{\beta}$$
(11)

Where the coefficient  $\beta$  indicates the degree of schooling behavior by the fish, which  $\beta \in [0,1]$ . And  $0 < \alpha \le 1$ .

#### **3.3** The cost and net benefits function

Consequently, the costs of fishing effort will be a linear function of the amount of effort –index of economic input in the form of labor, investment, fuel, maintenance and supplies, fixed costs and overhead that is devoted to the fishery on an annual basis. The annual cost of fishing C(e) is proportional to effort (e). For this report, it was assumed that the fishing boats are homogeneous. The cost function is expressed as:

Specific form: 
$$C(e) = ce + fk$$
 (12)

Where c represents marginal costs, and fk represents fixed costs.

The net benefits function assumes a constant price p, which when multiplied by harvests will give the revenues (R) from the fishery. Profits ( $\pi$ ) are therefore obtained by subtracting total costs (C(e)) which include; (i) costs associated with fishing effort and harvest and (ii) costs independent of fishing effort and harvest or fixed costs fk, from the marginal revenues (R), thus obtaining the following:

$$R = py(e, x) \tag{13}$$

$$C(e) = ce + fk \tag{14}$$

$$c = \frac{\sum (c_1 e + c_2 e + c_3 e + c_4 e + \dots)}{e_{No.of \ fishing \ day \ per \ vessel}}$$

Where  $c_1$  is the cost of fuels and lubricants,  $c_2$  is the cost of ice for fish conservation on board,  $c_3$  is the cost of food and supplies,  $c_4$  is the cost miscellaneous.

$$fk = \sum (fk_1 + fk_2 + fk_3 + fk_4 + fk_5 + \cdots)E$$

Where  $fk_1$  is the value of depreciation of the vessel,  $fk_2$  is the value of the vessel and fishing gear insurance,  $fk_3$  the value of the fishery license,  $fk_4$  is the captain and machinist wage,  $fk_5$  is the cost of vessel and fishing gear maintenance, and *E* represent the number of boats in the fishery.

The short-run total cost  $C_s$  may be represented:

$$C_s(e, y) = c_s e + \delta(pye - c_s e) + fk \tag{15}$$

Where  $\delta(pye - c_s e)$  represents the share of the crew, and  $1 > \delta \ge 0$ , and  $c_s e$  represents the variable cost per fishing day in a short-run option, represents as following:

The long-run total cost  $C_l$  may be represented:

$$C_l(e, y) = c_l e + \delta(pye - c_l e) + fk_l e$$
(16)

Where  $c_l e$  represents the variable cost per fishing day in a long-run option, and the  $fk_l$  represents the fixed cost in a long run option that can be expressed:

$$fk_l = \frac{fk}{E} \frac{1}{DAS}$$

DAS represents the day at sea per year per vessel, it is an assumption around 110 day at sea per vessel per year estimated according to fishing effort data available.

The profits from the fishery are defined as the total revenues R = py(e) less total costs C(e) defined above, and therefore the profits function are:

$$\pi(e, x) = py(e, x) - C(e, y) \tag{17}$$

Or, the profits at Short-run ( $\pi_s$ ) can be expressed:

$$\pi_s(e, x) = p(y(e, x)) - (1 - \delta). (py(e, x) - c_s e) - c_s e - fk$$
(18)

The profits at long-run  $(\pi_l)$  can be expressed:

$$\pi_{l}(e, x) = p(y(e, x)) - (1 - \delta). (py(e, x) - c_{l}e) - c_{l}e - fk_{l}e$$

#### 3.4 Fishery reference points and optimisation

#### 3.4.1 Static reference points

The static analysis is sufficient to explain the basic concept and to demonstrate why an open access system with no or incomplete property rights will provide incentives that will often lead to an inefficient combination of effort and stock size (Anderson and Seijo, 2010). Though static

reference points are useful, their static nature diminishes their utility as fisheries management tools. This is especially true since it is unlikely that any fishery is in complete equilibrium at any given time (Seijo *et al.*, 1998).

## **3.5** Static reference points for the maximum sustainable yield (MSY), maximum economic yield

(MEY) and the bionomic equilibrium (BE) will be examined using the biological and economic model described above. Reference points are included for the stock biomass, harvest and effort levels as well as for revenues, costs and profits within the fishery (see Appendix). The biological components of these reference points will be determined in accordance to the generalized Schaefer (1954), Anderson and Seijo (2010), Whitmarsh (2011) and Bjørndal *et al.*, (2012).

Biomass at MSY may be obtained using the formula:

$$X_{MSY} = \frac{\alpha}{2\beta} \tag{19}$$

And,

$$k = X_{max} = \frac{\alpha}{\beta} \tag{20}$$

While the associated harvest is obtained as follows:

$$Y_{MSY} = \frac{\alpha^2}{4\beta} = \frac{r}{4} k \tag{21}$$

Or,

$$Y_{MSY} = \alpha E_{MSY} + \beta E_{MSY}^2$$

#### 3.5.1 The Static model for long run and short run sustainable fisheries

Fisheries management is typically a complex problem, from both an environmental and political perspective. The main source of conflict occurs between the need for stock conservation and the need for fishing community well-being, which is typically measured by employment and income levels. For most fisheries, overexploitation of the stock requires a reduction in the level of fishing activity. While this may lead to long-term benefits (both conservation and economic), it also leads to a short-term reduction in employment and regional incomes. In regions which are heavily dependent on fisheries, short-term consequences of conservation efforts may be considerable (Mardle *et al.*, 2001).

The long run is the conceptual time period in which there are no fixed factors of production, so that there are no constraints preventing changing the output level by changing the capital stock or by entering or leaving an industry. The long run contrasts with the short run, in which some factors are variable, and others are fixed, constraining entry or exit from an industry. In macroeconomics, the long run is the period when the general price level, contractual wage rates,

and expectations adjust fully to the state of the economy, in contrast to the short run when these variables may not fully adjust (Keynes, 1936).

In static model for long run, change production levels in response to (expected) economic profits or losses, and the land, labor, capital goods and entrepreneurship vary to reach associated long-run average cost. In the simplified case of plant capacity as the only fixed factor, a generic firm can make these changes in the long run (i) enter an industry in response to (expected) profits (ii) leave an industry in response to losses (iii) increase its plant in response to profits (iv) decrease its plant in response to losses.

## 3.6 Sensitivity Analysis

A sensitivity analysis is a technique used to determine how different values of an independent variable will impact a particular dependent variable under a given set of assumptions. This technique is used within specific boundaries that will depend on one or more input. The sensitivity analysis can be helpful in overcoming, at least partly, the difficulties arising in the parameter determination and validation of complex fisheries models or procedures. Sensitivity analysis can be used for (i) the so-called internal model validation (i.e., determination whether the levels of uncertainties in the estimated input parameters are acceptable for modelling purposes or not), (ii) estimating the relative contribution of uncertainty in each input parameter to the model output uncertainty, and (iii) determining the levels of input parameter uncertainties which would lead to acceptable model results (Majkowski, 1982). Global sensitivity analysis is normally conducted by varying the values of model parameters around their reference value with a given amplitude, traditionally  $\pm 20\%$  (De Castro *et al.*, 2001; Elkalay *et al.*, 2003). The impact of these variations on one or several response variables is then assessed. Performing a sensitivity analysis requires (i) definition of input "factors" and their modalities (values), (ii) choice of response variables to be considered, (iii) use of an appropriate simulation design, and (iv) definition of the statistical model to be applied to analyses the response variables (Lehuta et al., 2010). Sensitivity indices (SIs) were assessed by the fit of a meta-model to response variables.

## 4 DATA SOURCES

The data for this report was collected from different sources. The data required was classified into two categories: biological and economic data.

## 4.1 Biological data

The data for the biological production of the pelagic fishery, including biomass, harvest quantities for the period 2003 to 2012 are based on statistical reports from INDP Statistics Division. In the Statistics Division, the harvest data from industrial fleet are based on statistic system with a sampling plan (Shimura, 1984). However, the total harvest data from industrial fleet is the sum of the collected data in industrial fishing ports in the islands of Santiago, S. Vicente, S. Nicolau and Sal. Thus, only for the artisanal fleet data, this sampling plan has a spatial stratification where each island is sampled every month resulting in a temporal stratification based on months. So, the nine islands are treated as a nine (spatial) strata with the twelve months of the year. The overall coverage rate is 18% of the 97 landings ports in Cape Vert. According to Shimura (1984), those sampling ports were selected considering the number of boats and fishing gear available and the accessibility. Six random samplings are made each

month for collection of data. Those data are used for harvest monthly estimation for each landing port through the extrapolation factor between the number of working days of the month and the number of sampled days, further, the island boats number and the sampled port boats number.

These data show that the total harvest of the industrial fleet is greater than artisanal fleet. Further, the harvest from industrial fleet is geared toward export, while the artisanal fleet has targeted the small local market only.

## 4.2 Effort data

The associated effort are based on statistical reports from INDP Statistics Division. And, the associated effort is split depending on category of fleet, thus, for industrial fleet the associated effort are days at sea, and for artisanal fleet the associated effort is the number of trips. The associated effort was developed by obtaining the number of licensed industrial boats per year from the Statistic Division database.

## 4.3 Economic data

The economics of the pelagic fishery was analysed from estimates of marginal costs, revenues and profits, and included were also harvest effort and fish price from 2003 to 2012. The data were based on information from the Statistic Division of INDP. However, the cost data was estimated according to the INDP research vessel which is used as both a research and industrial vessel. The costs incurred by the vessel was used to calculate the total costs incurred by other vessels because the vessel has similar technical features (length, gross tonnes, engine horse power, etc.) found in the semi-industrial and industrial fleet as defined in the previous chapters. Then, assuming research fishing vessel is adequately similar and often go out ten times per month on fishing trips lasting roughly two days, usually operating 11 months per year, with one month reserved for maintenance of the ship and fishing gear we obtain the total number of fishing day per year, and per boats.

Additional input and comparative information were obtained through interviews with persons involved in the fisheries sector, including ship-owners and fishers, and from public data sources such as the Statistics Division database (INDP, 2014).

## 4.4 Estimation of parameters

## 4.4.1 Biological parameters

The biological parameters for the industrial fisheries like intrinsic growth rate alpha ( $\alpha$ ) and the mortality rate beta ( $\beta$ ) were estimated using linear regression of CPUE (catch per unit of effort) versus effort taking into account the available data on harvests and effort each year (2003-2012) (see Appendix). As explained previously in the biomass growth function, it is possible to get the Xmax or the carrying capacity (K) from the expression  $K = \frac{\alpha}{\beta}$ . The effort at maximum sustainable yield was obtained from the expression  $E_{MSY} = \frac{\alpha}{2\beta}$  and the sustainable yield as a function of effort was obtained from the equation  $Y_{MSY} = \alpha E_{MSY} + \beta E_{MSY}^2$  Then, the value obtained for the biological parameter are given below in Tables 2, 3, and 4.

| Biological |           |         |          | R       |
|------------|-----------|---------|----------|---------|
| parameters | Estimate  | Lower   | Upper    | square  |
| Alpha      | 0.921668  | 0.55111 | 1.292222 | 0.98587 |
| Beta       | -0.000066 |         |          |         |
|            | 12 000 0  | 0.065.0 | 10 (15 0 |         |
| Xmax (K)   | 13,990.9  | 8,365.9 | 19,615.8 |         |
| E_MSY      | 6,995.4   | 4,182.9 | 9,807.9  |         |
| Y_MSY      | 3,223.7   | 1,152.6 | 6,337.0  |         |

Table 2: Biological parameters estimated for the Small pelagic fishery in Cape Verde

#### Table 3: Biological parameters estimated for the tuna fishery in Cape Verde

| Biological<br>parameters | Estimate  | Lower   | Upper    | R<br>square |
|--------------------------|-----------|---------|----------|-------------|
| Alpha                    | 0.506510  | 0.19455 | 0.818468 | 0.90222     |
| Beta                     | -0.000049 |         |          |             |
| Xmax                     | 10,410.9  | 3,998.9 | 16,822.9 |             |
| E_MSY                    | 5,205.5   | 1,999.4 | 8,411.5  |             |
| Y_MSY                    | 1,318.3   | 194.5   | 3,442.3  |             |

#### Table 4: Biological parameters estimated for the other fish category in Cape Verde

| Biological |            |         |         | k square |
|------------|------------|---------|---------|----------|
| parameters | Estimate   | Lower   | Upper   |          |
| Alpha      | 0.044324   | 0.00741 | 0.09606 | 0.98436  |
| Beta       | - 0.000002 |         |         |          |
| E_MSY      | 9,626.6    | 1,609.2 |         |          |
| Y_MSY      | 213.3      |         | 1,002.0 |          |

#### 4.4.2 Economic parameters

The total costs (TC) are defined as the sum of the fixed costs (fk) and variable costs as explained above. The fixed costs are those incurred independent of fishing activity and will include: (i) depreciation of vessel value and equipment (ii) vessel and fishing gear insurance (iii) fishery license (iv) captain and machinist annual wage (v) vessel and fishing gear maintenance (vi) management and overhead costs. Annual fixed costs are shown in Table 5. The estimate for the value of vessel and equipment is based on information given in interviews which produces a collective estimated value of 14,000,000 CVE (Cape Verde currency), with an annual depreciation rate of 4%. Thus, total annual depreciation costs are obtained from the value of the vessel and equipment estimated divided by 25 years (annual depreciation) which is equal to 560,000 CVE per year, with the average annual maintenance cost around 54,000 CVE. The licensing fee is equal to 26,356 CVE per year, and the vessel and fishing gear insurance are estimated to be 298,653 CVE. Cost associated with the fixed wage (captain & machinist) were estimated around 864,000 CVE. Thus, total fixed costs (fk) are estimated to be 2,291,009 CVE, per year per vessel.

Then, the fixed cost can be expressed in the equation:

 $fk = \sum (fk_{depreciation} + fk_{insurance} + fk_{licence} + fk_{wage} + fk_{maintenance}) \cdot E_{No.of\ boats}$ 

 Table 5: Annual fixed cost estimates associated with each industrial vessel

| Item                                | Fixed costs,<br>value (CVE) |
|-------------------------------------|-----------------------------|
| Depreciation                        | 560,000.00                  |
| Vessel and fishing gear insurance   | 298,653.00                  |
| Fisheries License                   | 26,356.00                   |
| Captain & machinist wage            | 864,000.00                  |
| Vessel and fishing gear maintenance | 542,000.00                  |
| Total (fk)                          | 2,249,009.00                |

Whereas, the variable costs are those which depend on fishing activity and will include (i) fuels & lubricants, (ii) ice for fish conservation on board, (iii) foods and supplies (iv) miscellaneous. The fuel cost estimated are based on trip data for cost of travel up to the main fishing grounds and back to the landings ports, calculated at the average price in 2012 which placed this value at 91,500 CVE per ton. According to the research fishing vessel data, the fuel consumption per year is around 32 tonnes, multiplying that value by per average price in 2012, the total fuel annual cost is placed in 2,928,000 CVE. The average amount of ice used per year is around 75 tonnes and the average ice price is around 12,500 CVE per ton, so the total cost is around 937,500 CVE. Foods and supplies are estimated at 439,600 CVE. And miscellaneous items totaled approximately 220,000 CVE. Thus, the total variable cost is estimated to be 4,525,100 CVE per year per vessel, as shown in Table 6. With the assumption that each vessel goes out 130 days per year, the variable cost per fishing day (c) are estimated around 34,808 CVE per vessel.

Then, the variable cost per fishing day can be expressed in the equation:

$$ce = \frac{\sum (c_{fuel} + c_{ice} + c_{foods} + c_{miscellaneous})}{No.of \ fishing \ day \ per \ vessel} * e_{Total \ day \ at \ sea}$$

 Table 6: Variable cost per year and per fishing day estimated, associated with each fishing vessel

| Item                               | Variable costs,<br>Value (CVE) |
|------------------------------------|--------------------------------|
| Fuels & lubricants                 | 2,928,000.00                   |
| Ice for fish conservation on board | 937,500.00                     |
| Foods                              | 400,000.00                     |
| Fresh Water                        | 39,600.00                      |
| Others supplies                    | 220,000.00                     |
| Total (CC)                         | 4,525,100.00                   |
|                                    |                                |
| Variable Cost per fishing day      | 34,808.46                      |

Then, the total cost function was be expressed as:

$$C_s(e, y) = c_s e + \delta(pye - c_s e) + fk$$
, representing the short-run total cost  $C_s$ ,

And,

 $C_l(e, y) = c_l e + \delta(pye - c_l e) + fk_l e$ , representing a long-run total cost  $C_l$ .

Where  $\delta$  is the share of the crew. The share of crew is estimate as 50% of total revenue minus variable cost that may be expressed as:

$$\delta = (py - ce) \ (0.5)$$

The parameter p was estimated based on overall fish price for the period 2003 to 2012 (see appendix).

Within this context, and based on the economic parameters and the harvest function the profit function may be expressed as:

$$\pi = py - (ce + \delta + fk)$$

#### **5 RESULTS**

#### 5.1 The static model of the fishery

Sustainability can be reached at many levels of biomass. According to Gorgon (1954) the particular interests are the bionomic equilibrium, the maximum sustainable yield biomass and the maximum economic yield biomass, where the  $TR_E = TC_E$ . Hence, the fishery would expand up to  $E_{BE}$ , in that case the resource would then be in equilibrium, since harvesting is being undertaken on a sustainable yield basis, and the perfectly competitive fishing industry would also be in equilibrium, since true economic profits would be equal zero.

Thus, sustainability or equilibrium biomass solutions are quite important as they imply longrun stability in biological and economic point of view.

#### 5.1.1 The short-run sustainable fishery policy

Figure 9 is basically a summary of the short-run sustainable fishery model for Cape Verde (industrial pelagic fisheries) based on modified Gordon-Schaefer specifications in which have associated revenue, cost and profits, in fishing effort.



Figure 9: Short-run sustainable fishery model for Cape Verde (industrial pelagic fisheries) based on modified Gordon-Schaefer specifications

Note that the net benefits curve represents the profits, after having subtracted the variable cost from the total revenue and then, 50% crew share, and the fixed cost.

Equilibrium fisheries management reference points were calculated based on the modified Schaefer-Gordon bioeconomic model showed above. The reference point includes the current condition (2012), in order to calculate the bioeconomic equilibrium (BE), maximum sustainable yield (MSY) and maximum economic yield (MEY). Thus, Table 7 below presents an economic outcome corresponding, according to these reference point.

| Reference<br>points  | No.<br>Vessel | Effort<br>(Day at<br>sea) | Total<br>Revenues | Variable<br>Cost | Wages   | Fixed      | Total<br>Costs | Net<br>benefits<br>(1000<br>CVE) |
|----------------------|---------------|---------------------------|-------------------|------------------|---------|------------|----------------|----------------------------------|
| CURRENT<br>SITUATION | 96            | 6,264                     | 597,366           | 218,040.20       | 189,663 | 168,675.68 | 576,378.98     | 20,987                           |
| BE                   | 96            | 7,077                     | 583,687           | 246,335.34       | 168,675 | 168,675.68 | 583,686.69     | 0                                |
| MSY                  | 96            | 6,140                     | 597,611           | 213,713.03       | 191,949 | 168,675.68 | 574,337.89     | 23,274                           |
| MEY                  | 96            | 5,042                     | 578,505           | 175,499.85       | 201,502 | 168,675.68 | 545,678.01     | 32,827                           |

Table 7: Short-run sustainable equilibrium and current (2012) reference point for industrial pelagic fisheries.

The current (2012) fishery reference situation indicates that fishing effort is slightly excessive compared to the optimal levels (MSY and MEY), despite this the total revenue improves slightly compared with short-run optimal levels. Nevertheless, the variable cost associated with the excessive effort, decreases the share of the crew, and the net benefits from the fishery. It is assumed that in the short-run sustainable option the the number of vessel remaind constant like the current (2012) fishery reference situation in order to reach  $E_{BE}$ ;  $E_{MSY}$ ;  $E_{MEY}$  option, changing only the total day at sea per year.

However, the most efficient outcome in the short run is reached at the MEY option. In the MEY option, the net benefits could increase 56% compared to the current net benefits level, and 36% compared to the MSY profits level. Hence, whether this MEY option have been chosen, means that the fishing effort would need to be adjusted including an initial reducing to the  $E_{MEY}$  level.

Note that based on the total cost estimated for the pelagic fishery, the values are also affected by the fishing effort level, on the sustainable BE, MSY and MEY equilibrium options. However, these are fairly close to each other with slight differences, most notable is the fact that there is small overall profits to be made using MSY static short-run option. Thus, the fact that the MSY option to be close the BE may call for caution as a MSY-policy would represent an economic risk, showing that again the MEY option is better. The effect of such risk could be easy realized based on historical effort levels data which show the implications in the net benefits from the fishery on each BE, MSY and MEY option.

Those outcomes are very important and will have significant implications for any management strategy developed. Levels of fishing effort based on historic data are shown in Table 8.

| Years | Effort (Days<br>at Sea) | Harvest<br>(tons) | Revenue | Variable<br>Cost | Wage    | Fixe<br>Cost | Total<br>Cost | Net<br>Benefits |
|-------|-------------------------|-------------------|---------|------------------|---------|--------------|---------------|-----------------|
| 2003  | 5,123                   | 3,196             | 229,062 | 90,242           | 69,410  | 121,574      | 281,225       | -52,163         |
| 2004  | 2,682                   | 3,415             | 248,036 | 53,616           | 97,210  | 134,839      | 285,664       | -37,629         |
| 2005  | 1,068                   | 3,168             | 245,410 | 26,541           | 109,434 | 130,618      | 266,593       | -21,183         |
| 2006  | 1,738                   | 5,657             | 481,934 | 42,363           | 219,786 | 138,139      | 400,287       | 81,647          |
| 2007  | 4,916                   | 4,432             | 405,205 | 110,963          | 147,121 | 127,674      | 385,758       | 19,447          |
| 2008  | 4,971                   | 4,102             | 386,869 | 110,510          | 138,179 | 130,890      | 379,579       | 7,290           |
| 2009  | 6,184                   | 4,320             | 450,956 | 171,900          | 139,528 | 193,378      | 504,806       | -53,850         |
| 2010  | 7,197                   | 4,831             | 541,424 | 232,321          | 154,551 | 244,705      | 631,577       | -90,153         |
| 2011  | 6,818                   | 4,620             | 549,625 | 253,289          | 148,168 | 251,425      | 652,882       | -103,257        |
| 2012  | 6,264                   | 5,951             | 775,980 | 218,040          | 278,970 | 215,905      | 712,915       | 63,065          |

Table 8: Different levels of fishing effort based in historical data (2003-2012) comparing with net benefits (1000 CVE) each year.

As can be seen on Table 8, the fishing effort levels, have been highly variable, in some case very close or even overtaking the bioeconomic equilibrium, thus affecting negatively the net benefits from the fishery.

## 5.1.2 The long-run sustainable fishery

In the previous chapter a short-run option for the sustainable fishery was shown, however, in order to provide an understanding of the long-run sustainable fishery model, a long-run sustainable option for the industrial pelagic fishery was simulated to explain how the revenue, cost and profits will behave, according to the fishing effort levels. The outcomes were shown according to each option  $E_{BE}$ ;  $E_{MSY}$ ;  $E_{MEY}$ . Thus, Figure 10, shows the long-run sustainable fishery model for pelagic fisheries. Table 9 outlines the long-term sustainable equilibrium for pelagic fisheries in Cape Verde.



Figure 10: Long-run sustainable fishery model for Cape Verde (industrial pelagic fisheries) based on modified Gordon-Schaefer specifications

Table 9: Long-run sustainable equilibrium and current (2012) reference point for industrial pelagic fisheries

| Reference<br>points  | No. of<br>Vessel | Effort<br>(Day at<br>Sea) | Total<br>Revenues | Variable<br>Cost | Wages   | Fixed<br>Cost | Total<br>Costs | Net<br>benefits<br>(1000<br>CVE) |
|----------------------|------------------|---------------------------|-------------------|------------------|---------|---------------|----------------|----------------------------------|
| CURRENT<br>SITUATION | 96               | 6,264                     | 597,366           | 218,040          | 189,663 | 128,071       | 535,774        | 61,592                           |
| BE                   | 68               | 7,504                     | 568,083           | 261,218          | 153,432 | 153,432       | 568,083        | 0                                |
| MSY                  | 56               | 6,140                     | 597,611           | 213,713          | 191,949 | 125,529       | 531,191        | 66,420                           |
| MEY                  | 34               | 3,752                     | 507,246           | 130,609          | 188,319 | 76,716        | 395,644        | 111,602                          |

The simulations above (Figure 10 and Table 9), show that this long-run sustainable option is better in order to get a sustainable and profitable fishery compared with the short-run sustainable option. It is therefore more important to reduce the number of vessels participating in the fishery then cut down on the number of days at sea. As can be seen, the current (2012) fishery reference situation indicates a fishing effort and investment strongly excessive, compared with the long-run sustainable option, hence, the cost associated with excessive effort, reduces the net benefits of the fishery. However, in the long-run sustainable option is assumed that the the number of vessel can change in order to reach  $E_{BE}$ ;  $E_{MSY}$ ;  $E_{MEY}$  option, so the overall fixed cost can change as well.

The MEY option presents the best and most efficient sustainable outcome for the fishery. Here the net benefits can reach almost 2 times more then the current profits, and almost 0.5 times more then the MSY profits level, however suggests that there be largest investment in reduction of fishing effort to allow this efficient sustainable outcome. Although this approach shows an extreme path to the optimal sustainability the fundamental principle of this approach can still be appreciated from a management point of view.

## 5.2 Sensitivity analysis

The sensitivity analysis consists of varying both the model and the management measure parameters and measuring the effect it has on model outcome. The model used to calculate the short-run and long-run sustainable fishery discussed above is subject to considerable uncertainty. Among other things the parameters used in the model may well be erroneous. In order to check the robustness of the calculated short-run and long run sustainable fisheries parameter misspecification, a sensitivity analysis of short run and long run sustainable fisheries to parameters values was conducted. The sensitivity analysis was run under scenarios to assess the impact of each parameter separately on the response variables (maximizing net benefits) so, the levels of factors were defined by variations between -30% to 30% around the reference value of the key parameters, variable costs and fish price.

#### 5.2.1 Sensitivity analysis of the Short-run sustainable fisheries

The sensitivity analysis was carried out and the results in this context based on changed assumptions of the base year (2012) indicated that the net benefits of the pelagic fishery are ranging between -52,721 thousand CVE and 120,264 thousand CVE when the fish price is assumed to change between -30% to 30% from the current fish price, and remaining the costs, according to the short-run sustainable fishery model for Cape Verde industrial pelagic fishery based on modified Gordon-Schaefer. The analysis shows that the model is very sensitive in relation to changing fish price, keeping the costs like the current (2012) situations, as shown in Figure 11 and Table 10.

The sensitivity analysis further indicates that changes in variable costs remaining current fish price, have slightly changes in net benefits (Figure 11 and Table 11), between 7,362 thousand CVE and 60,012 thousand CVE. The  $E_{MEY}$  in this situation remains almost the same as the  $E_{MEY}$  got from the model.



Figure 11: Sensitivity analysis, short-run sustainable fisheries

| Fish<br>price |              | Short l  | Run Sustai | nable Rela | tionships | (Sensitivit          | y analysis - (    | change in fi | sh price)      |                |                      |
|---------------|--------------|----------|------------|------------|-----------|----------------------|-------------------|--------------|----------------|----------------|----------------------|
| %<br>Change   | No<br>Vessel | E<br>MEY |            | Revenue    |           | Total<br>Revenu<br>e | Variable<br>costs | Wages        | Fixed<br>costs | Total<br>Costs | π<br>(Short-<br>run) |
| -30%          | 75           | 4,571    | 216,841    | 153,642    | 20,550    | 391,033              | 159,123           | 115,955      | 168,676        | 443,753        | -52,721              |
| -20%          | 75           | 4,767    | 253,067    | 176,973    | 24,166    | 454,206              | 165,947           | 144,130      | 168,676        | 478,752        | -24,546              |
| -10%          | 75           | 4,920    | 288,948    | 199,911    | 27,761    | 516,621              | 171,254           | 172,683      | 168,676        | 512,613        | 4,008                |
| 0%            | 75           | 5,042    | 324,589    | 222,574    | 31,341    | 578,505              | 175,500           | 201,502      | 168,676        | 545,678        | 32,827               |
| 10%           | 75           | 5,142    | 360,055    | 245,037    | 34,911    | 640,003              | 178,974           | 230,515      | 168,676        | 578,164        | 61,839               |
| 20%           | 75           | 5,225    | 395,390    | 267,349    | 38,473    | 701,212              | 181,869           | 259,671      | 168,676        | 610,216        | 90,996               |
| 30%           | 75           | 5,295    | 430,623    | 289,546    | 42,028    | 762,197              | 184,318           | 288,940      | 168,676        | 641,934        | 120,264              |

Table 10: Sensitivity analysis: changing fish price of the current (2012) fishery reference situation, keeping the costs in a short-run sustainable relationship

 Table 11: Sensitivity analysis: changing variable costs of the current (2012) fishery

 reference situation, keeping the fish price in a short-run sustainable relationship

| Costs           |                  | Short I  | Run Sustain | able Relation | nships (Ser | nsitivity ana    | lysis - chang     | e in costs) |                |                |                      |
|-----------------|------------------|----------|-------------|---------------|-------------|------------------|-------------------|-------------|----------------|----------------|----------------------|
| %<br>chan<br>ge | No<br>Ves<br>sel | E<br>MEY |             | Revenue       |             | Total<br>Revenue | Variable<br>costs | Wages       | Fixed<br>costs | Total<br>Costs | π<br>(Short-<br>run) |
| -30%            | 75               | 5,371    | 333,066     | 222,568       | 32,615      | 588,249          | 130,875           | 228,687     | 168,676        | 528,238        | 60,012               |
| -20%            | 75               | 5,261    | 330,414     | 222,768       | 32,201      | 585,383          | 146,514           | 219,435     | 168,676        | 534,624        | 50,759               |
| -10%            | 75               | 5,152    | 327,588     | 222,770       | 31,777      | 582,135          | 161,389           | 210,373     | 168,676        | 540,438        | 41,697               |
| 0%              | 75               | 5,042    | 324,589     | 222,574       | 31,341      | 578,505          | 175,500           | 201,502     | 168,676        | 545,678        | 32,827               |
| 10%             | 75               | 4,932    | 321,417     | 222,180       | 30,896      | 574,492          | 188,846           | 192,823     | 168,676        | 550,345        | 24,147               |
| 20%             | 75               | 4,822    | 318,071     | 221,587       | 30,440      | 570,098          | 201,429           | 184,335     | 168,676        | 554,439        | 15,659               |
| 30%             | 75               | 4,713    | 314,552     | 220,796       | 29,973      | 565,321          | 213,247           | 176,037     | 168,676        | 557,960        | 7,362                |

## 5.2.2 Sensitivity analysis of the long-run sustainable fisheries

The sensitivity analysis results in this context based on changed assumptions of the base year (2012) indicated that even the fish price change in a range of -30% to 30% keeping the total cost, the fishery also have potential for profitability between 41,325 thousand CVE to 190,817 thousand CVE, as shown in Figure 12 and Table 12.

On the other hand, if the total cost change in the same range, however, keeping the fish price, like the current (2012) fishery situations, the fishery also has potential profitability between 158,275 thousand CVE to 74,937 thousand CVE as shown in Figure 12 and Table 13.

And the  $E_{MEY}$  in a both situations remains almost the same as the  $E_{MEY}$  got from the model.



Figure 12: Sensitivity analysis, long-run sustainable fisheries

| Table 12  | 2: Sensitivity a | analysis | changing fish price of the current (2012) fishery reference |
|-----------|------------------|----------|-------------------------------------------------------------|
| situation | n, keeping the   | costs in | a long-run sustainable relationship                         |
|           | Day at sea per   | 110      |                                                             |

|               | year per     | r vessel | 110     |            |           |                  |               |              |           |                |                     |
|---------------|--------------|----------|---------|------------|-----------|------------------|---------------|--------------|-----------|----------------|---------------------|
| Fish<br>price |              |          | Long -r | un Sustain | able Rela | tionships (S     | Sensitivity a | nalysis - ch | ange in f | ish price)     |                     |
| %<br>Change   | No<br>Vessel | E<br>MEY |         | Revenue    |           | Total<br>Revenue | Variable      | Wages        | Fixed     | Total<br>Costs | π<br>(Long-<br>run) |
| -30%          | 25           | 2,729    | 154,769 | 120,659    | 13,808    | 289,235          | 94,993        | 97,121       | 55,796    | 247,911        | 41,325              |
| -20%          | 29           | 3,155    | 196,769 | 150,590    | 17,775    | 365,133          | 109,833       | 127,650      | 64,513    | 301,996        | 63,137              |
| -10%          | 32           | 3,487    | 237,142 | 178,661    | 21,643    | 437,445          | 121,375       | 158,035      | 71,293    | 350,703        | 86,742              |
| 0%            | 34           | 3,752    | 276,375 | 205,430    | 25,441    | 507,246          | 130,609       | 188,319      | 76,716    | 395,644        | 111,602             |
| 10%           | 36           | 3,969    | 314,781 | 231,252    | 29,190    | 575,223          | 138,164       | 218,529      | 81,154    | 437,847        | 137,376             |
| 20%           | 38           | 4,150    | 352,565 | 256,364    | 32,900    | 641,830          | 144,460       | 248,685      | 84,852    | 477,996        | 163,833             |
| 30%           | 39           | 4,303    | 389,871 | 280,930    | 36,582    | 707,383          | 149,787       | 278,798      | 87,981    | 516,566        | 190,817             |

 Table 13: Sensitivity analysis: changing total costs of the current (2012) fishery reference situation, keeping the fish price in a long-run sustainable relationship

| Costs           |                  |          | Lon     | g run Sustai | inable Rela | ationships (S    | ensitivity an     | alysis - cha | nge in co      | sts)           |                     |
|-----------------|------------------|----------|---------|--------------|-------------|------------------|-------------------|--------------|----------------|----------------|---------------------|
| %<br>Chan<br>ge | No<br>Ves<br>sel | E<br>MEY |         | Revenue      |             | Total<br>Revenue | Variable<br>Costs | Wages        | Fixed<br>Costs | Total<br>Costs | π<br>(Long-<br>run) |
| -30%            | 41               | 4,468    | 306,107 | 218,328      | 28,898      | 553,333          | 108,878           | 222,227      | 63,952         | 395,057        | 158,275             |
| -20%            | 38               | 4,230    | 297,016 | 214,966      | 27,796      | 539,778          | 117,784           | 210,997      | 69,183         | 397,964        | 141,814             |
| -10%            | 36               | 3,991    | 287,106 | 210,667      | 26,643      | 524,416          | 125,028           | 199,694      | 73,438         | 398,159        | 126,256             |
| 0%              | 34               | 3,752    | 276,375 | 205,430      | 25,441      | 507,246          | 130,609           | 188,319      | 76,716         | 395,644        | 111,602             |
| 10%             | 32               | 3,526    | 265,469 | 199,613      | 24,258      | 489,341          | 135,022           | 177,159      | 78,587         | 390,769        | 98,572              |
| 20%             | 30               | 3,301    | 253,830 | 192,958      | 23,031      | 469,818          | 137,863           | 165,978      | 79,628         | 383,468        | 86,350              |
| 30%             | 28               | 3,075    | 241,456 | 185,464      | 21,759      | 448,678          | 139,132           | 154,773      | 79,836         | 373,742        | 74,937              |

#### 6 DISCUSSION

#### 6.1 Sustainable fishery

The model used in this paper is a static model based on modified Gordon-Schaefer specifications that seeks to provide an estimate for optimal management of the pelagic fishery in Cape Verde. The major obstacle has been limited data mainly on running costs of fishing vessel, and biological data (abundance). However, the data on harvest and effort are available and seem to fit quite well with the assumptions of the static model. The estimates obtained seem to be realistic in terms of describing the current situation and the possibilities for improvements in management. There is no optimal dynamic model applied in this paper due to lack of data. Static analysis precludes the consideration of the time it takes the fish stock to adjust to changes in effort (Anderson and Seijo, 2010). Future studies could explore different specifications and apply the optimal dynamic model that takes into consideration changes in biomass, effort, costs and benefits (profits) over time.

The results for historical profitability of the fishery are as predicted. The fishery operates close to and sometimes beyond the BE. Analysis of the period 2003 to 2012 shows very high fluctuation in the net benefits of the fishery. The net benefits were most of the time small or negative due to excessive fishing effort which has resulted in high costs, while the total revenue has remained low. The short-run and long-run sustainable fishery analyses indicates excessive fishing efforts. The harvests are lower, however, the total cost are very high, which has resulted in a weak net benefits from the fishery over time. Consequently, the fishery finds itself at a stage close to the BE. Despite this, this current state may present an opportunity for management. The MEY short-run solution showed that the fishery has a potential for sustainable profits around 32,827 thousand CVE annually equal to 6% of the total revenue, slightly higher when compared with the current profits of 20,987 thousand CVE annually equal to 3.5% of the total revenue. This would however require an adjustment in the fishing effort levels.

The short-run solution showed that some improvements in the pelagic fishery could be realized in order to maximize economic rents, if the MEY optimal management solution is applied. It was also shown that the MSY option not only increases the revenue but also reduces the total cost consequently increasing the net benefits of the fishery. It is important as well that the shortrun solution has shown that excessively high effort levels would eventually lead to BE. Therefore, the results indicate that in order to reach the optimum sustainable yield and maximise economic yield, fishing effort needs to be reduced from 6,264 to 5,042 days at sea.

The sensitivity analysis has also shown that the model is very sensitive to changing fish price, keeping the costs at the current situations. This means that if this happens an adjustment of fishing effort is needed. However, the model is a little bit sensitive to changing variable cost, showing changes in the profit levels.

On the other hand, the long-run solution shows a potential for substantial improvements in profitability that could be realized in the large-scale fishery by applying long-run MEY optimal management. The result shows that the MEY long-run solution fishery has a potential for sustainable profits around 111,602 thousand CVE annually, equal to 22% of the total revenue, compared with the current profits around 61,592 thousand CVE annually equal to 10% of the total revenue. Moreover, in order to reach the maximum benefits, fishing effort needs to be reduced from 6,264 to 3,752 days at sea.

The sensitivity analysis has shown that even if the biological parameter estimations and information on price and costs change considerably, the industrial pelagic fisheries has the potential to generate economic rents, ranging between 41,325 thousand CVE to 190,817 thousand CVE from the model.

However, the bioeconomic models developed here show that the industrial pelagic fisheries are generally slightly profitable. It shows further that suitable effort management can substantially increase profits.

## 6.2 Management solutions

These results raise questions about what type of fisheries management systems may be best to achieve the optimal fishery in a sustainable sense. The fundamental problems of Cape Verde fishery are like those in many other fisheries around the world. Different interests may influence what kind of management options are used, especially in the light of the common property nature of the resource (Seijo *et al.*, 1998). There are very little or no incentives for individual fishers to invest in a fish stock, the resource tends to be overexploited and fishing effort and fleets to be excessive (for a short-term gain). This is what is called an open-access situation, where the individual fisherman, acting alone, has no incentive to do what would benefit the group as a whole. This results in a waste of valuable resources used to obtain competitive advantages in obtaining catches rather than achieving economic efficiency in the methods of harvesting. However, the fisherman will make sacrifices for future gain, agreeing to a smaller catch, or fishing under frustrating regulations, whether they are assured that everyone else must do the same.

To generate efficiency in fisheries, that is, to solve the "common resources" fisheries problem, one way could be to establish adequately high-quality property rights in the fishery. High-quality property rights are sufficient to generate efficiency because (a) they make efficient operations possible and (b) the initial lack of efficiency implies that the opportunity to obtain efficiency will be used. It has been recognized for a long time that property rights constitute a foundation for economic efficiency (Smith, 1977).

It is well known that the two pillars of economic efficiency and progress are specialization in production and accumulation of capital. Overall there are two pillars of economic efficiency and progress are specialization in production and accumulation of capital (Barro, 1995; Smith, 1977). Without property rights, the accumulation of capital is not individually attractive because any accumulated capital will be seized by others. With property rights, however, savings and accumulation of physical, human, and natural capital can become individually profitable (Arnason, 2012). In summary, the lack of an appropriate property rights system is perhaps the main reason why fish stocks tend to be misused under an open access regime (Anderson and Seijo, 2010).

The solution to the fishery problems lies in the development and implementation of a property rights-based fisheries management (PRBFM) system to overcome the common property problem and generate economic efficiency in fishery. According to Hannesson (1993), the rights owners have strong incentive to harvest as efficiently as possible and limit fishing effort to any level that will maximize his profits from the fishery. PRBFMs are used widely in fisheries management worldwide to varying extents and include, but are not limited to, sole ownerships, aces licences, territorial user rights in fisheries (TURFs) and various forms of harvest quota

systems (Arnason, 2008). The one chosen in many fisheries was limited licensing, and as has already been shown in the previous chapter, Cape Verde has adopted the limited licensing, most of them involved putting a limit both on the number of licences and on the permitted inputs (effort) available to each licence. In Iceland in the 1970s, for instance, there was a limit on the number of hours during which licence holder (each vessel) could fish. In other places there was a limit on the size of the licensed vessel, or its horsepower, or perhaps the number of traps or nets that it could carry (for an inshore fishery). These were all improvements on simple limited licensing, and versions of them are still being refined. But still each vessel under limited licensing wanted to beat the other vessel and beat the regulators too. Permits and licences are seen as property rights that are weak. Of these PRBFM systems, individual quotas (IQs) have proven to be most effective in solving the common property problem, particularly those that have been made transferable (Hannesson, 1993).

There are a number of conditions that must be developed for PRBFM to be successfully implemented. An effective property right is one which is secure in title, exclusive to the owner, durable in tenure, and preferably transferable to allow for a less efficient right holder to sell that right to a more efficient user (Arnason, 2008). However, improves the property rights in Cape Verde require better monitoring, control and surveillance (MCS) systems as well as judicial arrangements issuing sanctions to violators.

There are a number of ways that effort or catch management may be established but it is the way that they are imposed that will determine which, if any, objectives are satisfied. Hence, a more ideal option for the case of industrial pelagic fishery in Cape Verde, should start to implement the short-run sustainable fishery model, although, applying this model implies introducing some improvements in the approach to the current fisheries management. So, the short run suggestions here are basically in terms of reinforcing the input controls or fishing effort management, such as limited entry, as conservation measures. This is done to protect the fish stocks from becoming over-exploited and encouraging the recovery of the pelagic stocks. Restrictions might be put first on number of fishing licence issue, on the intensity of use of gear that fishers use to catch fish, on the number and size of fishing vessels (fishing capacity controls), and on the amount of time fishing vessels are allowed to fish (vessel usage controls) or the product of capacity and usage (fishing effort controls). These types of limited entry systems help to prevent outsiders from taking part in the fishery.

Stronger management of the existing fleet is needed in order to be more economically efficient, to try to develop it from the current situation of overcapacity towards long run profitability. One way to achieve this is to set up a system of total allowable number of boat days at sea for the fleet. Once use rights are allocated, the fisher is permitted to rent or lease use rights to another fisher within a fishing season. The rights then revert to the original fisher at the end of the season. This mechanism provides important flexibility so that a fisher who happens to become sick or whose vessel breaks down one year can still obtain some income by renting out the use rights. Transferability is often promoted as a means to improve economic efficiency, using an argument such as the following. According to FAO (2002) to be economically efficient, the participants in a fishing fleet should be those most profitable in harvesting the available fish. In theory, a market-based system, with divisibility and transferability of input or output rights, improves efficiency, as vessel owners who maximise the profits resulting from a given quota will buy up that quota from others - like a commodity on the market. The idea is that with transferability, the more 'efficient' vessel owners remain in the fishery, while others sell their quota and leave, in a 'survival of the fittest' process leading to increasing overall efficiency of individual fishers.

Also, since it is needed to regulate the impact on fish stocks, an 'efficient' fishery should be seen as one that produces the greatest net benefits for every fish caught. This implies that it is not a matter of getting large quantities of fish quickly and cheaply out of the sea, but rather getting the most from each fish that is taken. There is no reason to expect that buying and selling of transferable rights will reflect this broader idea of efficiency. The transferability increases the 'mobility' of individual fishers, allows each to exit the fishery when the revenue to be gained from the sale of the use right exceeds the expected benefits of remaining in the fishery (FAO, 2002). This provides maximum flexibility for the fisher and makes it easier for managers to reduce participation in the fishery. Conversely, non-transferrable systems provide better stability, but reduce mobility of the fishers - making it more difficult to reduce fishing power over time (capacity reduction). In particular, incentives exist to keep non-transferable rights in use as long as possible, to maximise actual benefits, and in the hope of a financial windfall should there be a later decision to allow transferability. This may mean that a boat will be used beyond its technological life, which can also create safety problems (FAO, 2002)

Thus input/effort allocations can be a viable approach to rights-based management if care is taken in defining the rights and if a suitable portfolio of rights is established (Hilborn *et al.* 2001), and if a plan is put in place to deal with fishing efficiency improvements and capacity control - as noted in the Code of Conduct. Note, however, that any quantitative rights system, whether involving effort rights or harvest quotas (see below) inherently requires certain data collection and monitoring schemes to operate; naturally, the cost and feasibility of these must be taken into account.

The main goal is to reach the long run sustainable fisheries. Once reached that input control or fishing effort management, it is possible to apply the output controls or catch management as conservation measures in a long-run. and the suggestion is implementation of the ITQs, an individual transferable quota (ITQ) system which has been successfully used to promote economic efficiency as well as biological conservation in some of the world's most developed fisheries. Obviously, this requires added research and adds to the monitoring and enforcement costs under ITQ system, compared with another system like licencing system.

However, additional requirement would include deeper biological and economic programmes to assess the stock and determine TACs. Despite these challenges it seems certain that the fishery has the potential for sustainable profits and therefore an investment in an optimal management system may be worthwhile.

## 7 CONCLUSION

In this paper, a bioeconomic model has been developed to identify optimal management of pelagic fisheries, applied to the industrial pelagic fisheries of Cape Verde. It is found that the fishery was very close to and sometimes negatively overtaking the bioeconomic equilibrium and found to be at a stage that requires care in terms of management. On this basis, it is concluded that management in the years under analysis (2003-2012), did not work very well. Hence, the fisheries produce only small net benefits in some years that were analysed. So, this paper confirms the excessive effort level applied to this fishery. The paper identifies substantial opportunities for generating rents from the fishery. The results indicate that it can be increased 81% compared with the current profit in a long-run analysis, or 56% in a short-run analysis, implying that the fishery have potential to achieve the economic efficiency, but in order to reach this, the result suggest a reduction in fishing effort from the current 6,264 to 3,752 or 5,042.

Furthermore, the analysis suggests that in order to increase the economic efficiency, the biggest potential is in applying the long run sustainable fishery solutions, with the implementation of tradable property rights based system.

The literature on ecosystem-based fisheries management clearly shows that the exploitation of a pelagic stock might have a significant impact on the marine environment. Furthermore, pelagic species often have highly fluctuating recruitment, which influences management strategies. The model applied in this paper lacks deeper integration of these aspects, but they are important for a fully comprehensive fisheries management analysis.

## 8 **RECOMMENDATIONS**

- Effort levels should be reduced from 6,264 to 5,042 days at sea in a short-run solution, or from 6,264 to 3,752 days at sea, if the aim is to maximise the economic efficiency in a long-run solution.
- Development of legislative and institucional arrangements that allows the gradual implementation of an approprieted property rights-based fisheries management system.
- Improvement of the long-term biological and economic research programme and securing the national stock through improved MCS.
- Improve the local and international partnerships regarding the development and implementation of property rights in the fishery.
- Develop and implement the long-run sustainable fishery solution.
- Implementation of the ITQs for the harvest sector.
- Focusing on the quality and value of the product landed, or aggregation of value to fishery products rather than maximizing catch.

#### ACKNOWLEDGEMENTS

I would like to express my gratitude to my distinguished supervisor Dr. Daði Már Kristófersson of the University of Iceland, for his excellent technical input and guidance, during the development and writing of this report and ensured that the best possible output was produced.

I would like to extend sincere gratitude to the UNU-FTP staff, namely Dr. Tumi Tomasson, Þór H. Ásgeirsson, Sigríður Kr. Ingvarsdóttir, and Mary Frances Davidson, first of all the opportunity to be part of this wonderful programme which has no doubt greatly enhanced my capacity as a professional, and secondly for truly life changing experience in Iceland.

I would like to thank a person who was and will always be very important in my life, but unfortunately is no longer is among us, my father Augusto Alexandre Évora, I love you.

Finally, I want to express my thanks to my family who encouraged me, and my very good friends particularly those I have met in Iceland who have not only supported me during the writing of this paper but also ensured my experience in Iceland was one.

For the last but not the least, I would like to thank the President of National institute for fishing development of Cape Verde for allowing me to participate in this training course.

#### LIST OF REFERENCES

- Anderson, L. G., & Seijo, J. C. (2010). *Bioeconomics of Fisheries Management*. New York: John Wiley & Sons, Inc.
- Anderson, L. G., A. Ben-Israel, G. Custis. and C. C. Sarabun. (1979). "Modeling and simulation of interdependent fisheries and optimal effort allocation using mathematical programming." NATO Symposium on Applied Operations Research in Fishing, 14 Aug. Trondheim (Norway), 1:501-525.
- Arnason, R. (2008). Basic Fisheries Economics . Workshop on Policy and Planning for Coastal Fisheries Resources. University of South Pacific, Suva, Fiji.
- Arnason, R. (2012). Property Rights in Fisheries: How Much Can Individual Transferable Quotas Accomplish? *Rev Environ Econ Policy* 6:217–236.
- Bjørndal, T., & Munro, G. R. (2012). *The Economics & Management of World Fisheries*. Oxford University Press.
- Bonini, S., Saran, N., & Stein, L. (2011). *Design for Sustainable Fisheries: Modelling Fishery Economics.* Miami: McKinsey & Co.
- Bohner, M., Warth, H. (2007). The Beverton–Holt dynamic equation. *Appl. Anal.* 86(8): 1007–1015
- Cochrane, K.L. (2002). A Fishery Manager's Guidebook Management Measures and Their Application. FAO Fisheries Technical Paper, 424. Rome: FAO.
- de Castro, L.N., Von Zuben, F.J. (2001). aiNet: an artificial immune network for data analysis, in: H.A. Abbass, R.A. Sarker, C.S. Newton (Eds.), Data Mining: A Heuristic Approach, Idea Group Publishing, 2001, pp. 231–259.
- Defeo, O. & Seijo, J.C. (1999). Yield-mortality models: a precautionary bioeconomic approach. *Fish. Res.*, 40: 7 -16.
- Econstor (2012). The effects of EU fisheries partnership agreements on fish stocks and fishermen: The case of Cape Verde. Econstor.
- Elkalay K, Frangoulis C, Skliris N, Goffart A, Gobert S, Lepoint G, Hecq JH. 2003. A model of the seasonal dynamics of biomass and production of the seagrass Posidonia oceanica in the Bay of Calvi (Northwestern Mediterranean). *Ecological Modelling* 167: 1–18.
- Graham, M. (1935). Modern theory of exploiting a fishery and application to North Sea trawling. *ICES J Mar Sci* 10, 264-274.
- Hannesson, R. (2011). Bioeconomic Production Function in Fisheries: Theoretical and Empirical Analysis. *Canadian Journal of Fisheries and Aquatic Sciences* 40, 968– 982.
- Hilborn, R., Maquire, J., Parma, A. M. & Rosenberg, A. A. (2001). The precautionary approach and risk management: can they increase the probability of successes in fishery management? *Can. J. Fish. Aquat. Sci.* 58: 99-107
- INDP (2014). Data on artisanal and industrial fishing, canning and export (years 1994 -2014). National Institute For Fishing Development, Statistical Division. Mindelo: INDP.
- Keynes, J.M. (1936). The General Theory of Employment, Interest and Money. London : McMillan.
- Lehuta, S., Mahévas, S., & Petitgas, P. (2010). Combining sensitivity and uncertainty analysis to evaluate the impact of management measures with ISIS–Fish: marine protected areas for the Bay of Biscay anchovy (Engraulis encrasicolus) fisher. *ICES J. Mar. Sci.* 67: 1063-1075.
- Lleonart, J., Maynou, F., Recasens, L. and Franquesa, R. (2003) A bioeconomic model for

Mediterranean fisheries, the hake off Catalonia (Western Mediterranean) as a case study. *Scientia Marina* 67(1), 337–351.

- Mardle, S., & Pascoe, S. (2001). Modelling the effects of trade-offs between long and short-term objectives in fisheries management. *J Environ Manag* 65: 49–62
- Maynou, F., Sardà, F., Tudela, S., Demestre, M. (2006). Management strategies for red shrimp (*Aristeus antennatus*) fisheries in the Catalan sea (NW Mediterranean) based on bioeconomic simulation models. *Aquat Living Resour* 19: 161–171.
- Mattos, S., F. Maynou and R. Franquesa. (2006). A bio-economic analysis of the hand–line and gillnet coastal fisheries of Pernambuco State, north-eastern Brazil. *Sci. Mar.*, 70(2): 335-346.
- Majkowski, J. (1982). Usefulness and applicability of sensitivity analysis in a multispecies approach to fisheries management. In eds. D. Pauly and G. I. Murphy. Theory and management of tropical fisheries. ICLARM Conf. Proc. 9. pp. 149-165.
- Schaefer, M.B. (1954). Some aspects of the dynamics of populations important to the management of commercial marine fisheries. *Bull. Inter-Am. Trop. Tuna Comm.*, 1, 27–56.
- Seijo, J.C., Defeo, O., and Salas, S. (1998) Fisheries bioeconomics: theory, modelling and management. *FAO Fish. Tech. Pap. No. 368* Rome: FAO.
- Shimura, G. (1984). On Differential operators attached to certain representations of classical groups. *Invent. math.* 77, 463-488.
- Smith, K. (1977). Capitalism. Wiley Online Library DOI: 10.1002/9781118430873.est0041
- Sumaila, U.R. (1999) A review of game-theoretic models of fishing. Marine Policy 23, 1-10.
- Ulrich, C., Le Gallic, B., Dunn, M.R., Gascuel, D. (2002). A multispecies multi-fleet bioeconomic simulation model for the English Channel artisanal fisheries. *Fish Res* 58: 379–401
- Whitmarsh, D. (2011). Economic Management of Marine Living Resources. Cornwall: TJ International Ltd.

## APPENDIX

## Appendix 1: Basic bioeconomic data and calculations for the period 2003 to 2012

| Year |                  | Harvest |       | Total<br>Harvest | Eff              | Effort      |      | CPUE Total<br>Revenue |      | Costs   |         | Net Benefit<br>(1000<br>CVE) |          |
|------|------------------|---------|-------|------------------|------------------|-------------|------|-----------------------|------|---------|---------|------------------------------|----------|
|      | Small<br>Pelagic | Tuna    | Other | -                | Day<br>at<br>sea | No.<br>Boat | S. P | T.                    | 0.   |         | V. Cost | Fixe<br>Cost                 |          |
| 2003 | 2,088            | 987     | 121   | 3,196            | 5,123            | 61          | 0.41 | 0.19                  | 0.02 | 229,062 | 90,242  | 121,574                      | -52,163  |
| 2004 | 2,027            | 1,294   | 94    | 3,415            | 2,682            | 66          | 0.76 | 0.48                  | 0.04 | 248,036 | 53,616  | 134,839                      | -37,629  |
| 2005 | 2,358            | 675     | 135   | 3,168            | 1,068            | 69          | 2.21 | 0.63                  | 0.13 | 245,410 | 26,541  | 130,618                      | -21,183  |
| 2006 | 3,743            | 1,366   | 548   | 5,657            | 1,738            | 66          | 2.15 | 0.79                  | 0.32 | 481,934 | 42,363  | 138,139                      | 81,647   |
| 2007 | 3,360            | 801     | 271   | 4,432            | 4,916            | 61          | 0.68 | 0.16                  | 0.06 | 405,205 | 110,963 | 127,674                      | 19,447   |
| 2008 | 3,158            | 835     | 109   | 4,102            | 4,971            | 73          | 0.64 | 0.17                  | 0.02 | 386,869 | 110,510 | 130,890                      | 7,290    |
| 2009 | 2,762            | 1,438   | 120   | 4,320            | 6,184            | 73          | 0.45 | 0.23                  | 0.02 | 450,956 | 171,900 | 193,378                      | -53,850  |
| 2010 | 3,377            | 1,316   | 138   | 4,831            | 7,197            | 96          | 0.47 | 0.18                  | 0.02 | 541,424 | 232,321 | 244,705                      | -90,153  |
| 2011 | 2,977            | 1,429   | 214   | 4,620            | 6,818            | 96          | 0.44 | 0.21                  | 0.03 | 549,625 | 253,289 | 251,425                      | -103,257 |
| 2012 | 3,946            | 1,709   | 296   | 5,951            | 6,264            | 96          | 0.63 | 0.27                  | 0.05 | 775,980 | 218,040 | 215,905                      | 63,065   |

## Appendix 2: Linear regression Calculations

|                  | CPUE     |          |        |        |           |
|------------------|----------|----------|--------|--------|-----------|
| SMALL<br>PELAGIC | TUNAS    | OTHERS   | EFFORT | D05_06 | Lin_05_06 |
| 0.407573687      | 0.192661 | 0.023619 | 5123   | 0      | 0         |
| 0.755779269      | 0.482476 | 0.035048 | 2682   | 0      | 0         |
| 2.207865169      | 0.632022 | 0.126404 | 1068   | 1      | 1068      |
| 2.153624856      | 0.785961 | 0.315305 | 1738   | 1      | 1738      |
| 0.683482506      | 0.162937 | 0.055126 | 4916   | 0      | 0         |
| 0.635284651      | 0.167974 | 0.021927 | 4971   | 0      | 0         |
| 0.446636481      | 0.232536 | 0.019405 | 6184   | 0      | 0         |
| 0.469223287      | 0.182854 | 0.019175 | 7197   | 0      | 0         |
| 0.43663831       | 0.209592 | 0.031388 | 6818   | 0      | 0         |
| 0.629948914      | 0.272829 | 0.047254 | 6264   | 0      | 0         |

| SUMMARY<br>OUTPUT | (SMALL PE         | LAGIC)            |                       |            |                   |              |                |                |
|-------------------|-------------------|-------------------|-----------------------|------------|-------------------|--------------|----------------|----------------|
|                   |                   |                   |                       |            |                   |              |                |                |
| Regression        | Statistics        |                   |                       |            |                   |              |                |                |
| Multiple R        | 0 99291           |                   |                       |            |                   |              |                |                |
| R Square          | 0.98587           |                   |                       |            |                   |              |                |                |
| Adjusted R        |                   |                   |                       |            |                   |              |                |                |
| Square            | 0.97881           |                   |                       |            |                   |              |                |                |
| Error             | 0.10107           |                   |                       |            |                   |              |                |                |
| Observations      | 10                |                   |                       |            |                   |              |                |                |
|                   |                   |                   |                       |            |                   |              |                |                |
| ANOVA             |                   |                   |                       |            |                   |              |                |                |
|                   | df                | SS                | MS                    | F          | Significance<br>F |              |                |                |
| Regression        | 3                 | 4.276745          | 1.425582              | 139.553256 | 0.000006          |              |                |                |
| Residual          | 6                 | 0.061292          | 0.010215              |            |                   |              |                |                |
| Total             | 9                 | 4.338037          |                       |            |                   |              |                |                |
|                   |                   |                   |                       |            |                   |              |                |                |
|                   | Coefficients      | Standard<br>Error | t Stat                | P-value    | Lower 95%         | Upper<br>95% | Lower<br>95.0% | Upper<br>95.0% |
| Intercept         | 0.92167           | 0.15144           | 6.08613               | 0.00089    | 0.55111           | 1.29222      | 0.55111        | 1.29222        |
| EFFORT            | -0.00007          | 0.00003           | -2.47074              | 0.04841    | -0.00013          | 0.00000      | -0.00013       | 0.00000        |
| D05_06            | 1.37266           | 0.34297           | 4.00227               | 0.00710    | 0.53344           | 2.21188      | 0.53344        | 2.21188        |
| Lin_05_06         | -0.00002          | 0.00021           | -0.07014              | 0.94636    | -0.00054          | 0.00051      | -0.00054       | 0.00051        |
|                   |                   |                   |                       |            |                   |              |                |                |
| RESIDUAL          |                   |                   |                       |            |                   |              |                |                |
| OUTPUT            |                   |                   |                       |            | PROBABILI         | ΓΥ OUTPL     | JT             |                |
| Observation       | Predicted<br>CPUE | Residuals         | Standard<br>Residuals |            | Percentile        | CPUE         |                |                |
| 1                 | 0.58418           | -0.17661          | -2.14009              |            | 5.00000           | 0.40757      |                |                |
| 2                 | 0.74499           | 0.01079           | 0.13078               |            | 15.00000          | 0.43664      |                |                |
| 3                 | 2.20787           | 0.00000           | 0.00000               |            | 25.00000          | 0.44664      |                |                |
| 4                 | 2.15362           | 0.00000           | 0.00000               |            | 35.00000          | 0.46922      |                |                |
| 5                 | 0.59782           | 0.08566           | 1.03804               |            | 45.00000          | 0.62995      |                |                |
| 6                 | 0.59420           | 0.04109           | 0.49790               |            | 55.00000          | 0.63528      |                |                |
| 7                 | 0.51429           | -0.06765          | -0.81978              |            | 65.00000          | 0.68348      |                |                |
| 8                 | 0.44755           | 0.02167           | 0.26257               |            | 75.00000          | 0.75578      |                |                |
| 9                 | 0.47252           | -0.03588          | -0.43483              |            | 85.00000          | 2.15362      |                |                |
| 10                | 0.50902           | 0.12093           | 1.46541               |            | 95.00000          | 2.20787      |                |                |

| SUMMARY<br>OUTPUT  | (TUNAS)      |          |         |         |              |         |        |        |
|--------------------|--------------|----------|---------|---------|--------------|---------|--------|--------|
|                    |              |          |         |         |              |         |        |        |
| Regression St      | atistics     |          |         |         |              |         |        |        |
| Multiple R         | 0.9499       |          |         |         |              |         |        |        |
| R Square           | 0.9022       |          |         |         |              |         |        |        |
| Adjusted R Square  | 0.8533       |          |         |         |              |         |        |        |
| Standard Error     | 0.0851       |          |         |         |              |         |        |        |
| Observations       | 10.0000      |          |         |         |              |         |        |        |
|                    |              |          |         |         |              |         |        |        |
| ANOVA              |              |          |         |         |              |         |        |        |
|                    |              |          |         |         | Significance |         |        |        |
|                    | df           | SS       | MS      | F       | F            |         |        |        |
| Regression         | 3            | 0.4008   | 0.1336  | 18.4540 | 0.0020       |         |        |        |
| Residual           | 6            | 0.0434   | 0.0072  |         |              |         |        |        |
| Total              | 9            | 0.4443   |         |         |              |         |        |        |
|                    |              |          |         |         |              |         |        |        |
|                    |              | Standard |         |         |              | Upper   | Lower  | Upper  |
|                    | Coefficients | Error    | t Stat  | P-value | Lower 95%    | 95%     | 95.0%  | 95.0%  |
| Intercept          | 0.5065       | 0.1275   | 3.9729  | 0.0073  | 0.1946       | 0.8185  | 0.1946 | 0.8185 |
| EFFORT             | 0.0000       | 0.0000   | -2.1675 | 0.0733  | -0.0001      | 0.0000  | 0.0001 | 0.0000 |
| D05_06             | -0.1199      | 0.2887   | -0.4152 | 0.6925  | -0.8264      | 0.5866  | 0.8264 | 0.5866 |
| Lin_05_06          | 0.0003       | 0.0002   | 1.5382  | 0.1749  | -0.0002      | 0.0007  | 0.0002 | 0.0007 |
|                    |              |          |         |         |              |         |        |        |
|                    |              |          |         |         |              |         |        |        |
| RESIDUAL<br>OUTPUT |              |          |         |         | PROBABILI    | FY OUTF | UT     |        |

| Observation |    | Predicted<br>CPUE | Residuals | Standard<br>Residuals | Percentile | CPUE   |
|-------------|----|-------------------|-----------|-----------------------|------------|--------|
|             | 1  | 0.2573            | -0.0646   | -0.9299               | 5          | 0.1629 |
|             | 2  | 0.3760            | 0.1064    | 1.5322                | 15         | 0.1680 |
|             | 3  | 0.6320            | 0.0000    | 0.0000                | 25         | 0.1829 |
|             | 4  | 0.7860            | 0.0000    | 0.0000                | 35         | 0.1927 |
|             | 5  | 0.2673            | -0.1044   | -1.5027               | 45         | 0.2096 |
|             | 6  | 0.2647            | -0.0967   | -1.3917               | 55         | 0.2325 |
|             | 7  | 0.2056            | 0.0269    | 0.3870                | 65         | 0.2728 |
|             | 8  | 0.1564            | 0.0265    | 0.3813                | 75         | 0.4825 |
|             | 9  | 0.1748            | 0.0348    | 0.5008                | 85         | 0.6320 |
|             | 10 | 0.2018            | 0.0711    | 1.0230                | 95         | 0.7860 |

| SUMMARY<br>OUTPUT                | (OTHERS)     |                   |           |           |                   |              |                |                |
|----------------------------------|--------------|-------------------|-----------|-----------|-------------------|--------------|----------------|----------------|
| Regression                       | Statistics   |                   |           |           |                   |              |                |                |
| Multiple R                       | 0.99215      |                   |           |           |                   |              |                |                |
| R Square                         | 0.98436      |                   |           |           |                   |              |                |                |
| Adjusted R<br>Square<br>Standard | 0.97655      |                   |           |           |                   |              |                |                |
| Error                            | 0.01411      |                   |           |           |                   |              |                |                |
| Observations                     | 10           |                   |           |           |                   |              |                |                |
|                                  |              |                   |           |           |                   |              |                |                |
| ANOVA                            |              |                   |           |           |                   |              |                |                |
|                                  | df           | SS                | MS        | F         | Significance<br>F |              |                |                |
| Regression                       | 3            | 0.07521           | 0.02507   | 125.91687 | 0.00001           | -            |                |                |
| Residual                         | 6            | 0.00119           | 0.00020   |           |                   |              |                |                |
| Total                            | 9            | 0.07641           |           |           |                   |              |                |                |
|                                  |              |                   |           |           |                   |              |                |                |
|                                  | Coefficients | Standard<br>Error | t Stat    | P-value   | Lower 95%         | Upper<br>95% | Lower<br>95.0% | Upper<br>95.0% |
| Intercept                        | 0.0443       | 0.0211            | 2.0965    | 0.0809    | -0.0074           | 0.0961       | -<br>0.0074    | 0.0961         |
| EFFORT                           | 0.0000       | 0.0000            | -0.6185   | 0.5590    | 0.0000            | 0.0000       | 0.0000         | 0.0000         |
| D05 06                           | -0.2190      | 0.0479            | -4.5744   | 0.0038    | -0.3362           | -<br>0.1019  | - 0.3362       | -0.1019        |
| _<br>Lin_05_06                   | 0.0003       | 0.0000            | 9.4697    | 0.0001    | 0.0002            | 0.0004       | 0.0002         | 0.0004         |
| RESIDUAL OUTPUT                  |              |                   |           |           | PROBABILI         | TY OUTH      | PUT            |                |
|                                  | Predicted    | <b></b>           | Standard  |           |                   |              |                |                |
| Observation                      | CPUE         | Residuals         | Residuals |           | Percentile        | CPUE         |                |                |
|                                  | 0.033        | -0.009            | -0.773    |           | 5.00              | 0.02         |                |                |
| 2                                | 0.038        | -0.003            | -0.269    |           | 15.00<br>25.00    | 0.02         |                |                |
| 4                                | 0.120        | 0.000             | 0.000     |           | 25.00<br>35.00    | 0.02         |                |                |
| 5                                | 0.033        | 0.000             | 1.920     |           | 45.00             | 0.02         |                |                |
| 6                                | 0.033        | -0.011            | -0.951    |           | 55.00             | 0.04         |                |                |
| 7                                | 0.030        | -0.011            | -0.927    |           | 65.00             | 0.05         |                |                |
| 8                                | 0.028        | -0.009            | -0.745    |           | 75.00             | 0.06         |                |                |
| 9                                | 0.029        | 0.003             | 0.240     |           | 85.00             | 0.13         |                |                |
| 10                               | 0.030        | 0.017             | 1.506     |           | 95.00             | 0.32         |                |                |

| Short-run Sustainable relationships |                  |         |        |                    |                |         |         |                |                 |  |
|-------------------------------------|------------------|---------|--------|--------------------|----------------|---------|---------|----------------|-----------------|--|
| Effort<br>(Day at<br>Sea)           | Revenue          |         |        | Tatal              | Operating cost |         |         | Total          | Net<br>benefits |  |
|                                     | Small<br>pelagic | Tuna    | Other  | - lotal<br>revenue | Variable       | Wages   | Fixed   | l otal<br>cost | (1000<br>CVE)   |  |
| 2,500                               | 206,662          | 162,612 | 18,320 | 387,594            | 87,021         | 150,287 | 168,676 | 405,983        | -18,389         |  |
| 2,750                               | 222,383          | 173,220 | 19,852 | 415,455            | 95,723         | 159,866 | 168,676 | 424,265        | -8,810          |  |
| 3,000                               | 237,204          | 182,801 | 21,328 | 441,333            | 104,425        | 168,454 | 168,676 | 441,555        | -222            |  |
| 3,250                               | 251,126          | 191,354 | 22,750 | 465,230            | 113,128        | 176,051 | 168,676 | 457,854        | 7,375           |  |
| 3,500                               | 264,148          | 198,879 | 24,117 | 487,145            | 121,830        | 182,658 | 168,676 | 473,163        | 13,982          |  |
| 3,750                               | 276,272          | 205,377 | 25,430 | 507,078            | 130,532        | 188,273 | 168,676 | 487,481        | 19,598          |  |
| 4,000                               | 287,496          | 210,846 | 26,688 | 525,030            | 139,234        | 192,898 | 168,676 | 500,807        | 24,222          |  |
| 4,250                               | 297,821          | 215,288 | 27,891 | 541,000            | 147,936        | 196,532 | 168,676 | 513,144        | 27,856          |  |
| 4,500                               | 307,246          | 218,702 | 29,040 | 554,988            | 156,638        | 199,175 | 168,676 | 524,489        | 30,499          |  |
| 4,750                               | 315,773          | 221,088 | 30,134 | 566,995            | 165,340        | 200,827 | 168,676 | 534,843        | 32,152          |  |
| 5,000                               | 323,400          | 222,447 | 31,173 | 577,019            | 174,042        | 201,489 | 168,676 | 544,207        | 32,813          |  |
| 5,250                               | 330,128          | 222,778 | 32,157 | 585,063            | 182,744        | 201,159 | 168,676 | 552,579        | 32,483          |  |
| 5,500                               | 335,956          | 222,081 | 33,087 | 591,124            | 191,447        | 199,839 | 168,676 | 559,961        | 31,163          |  |
| 5,750                               | 340,886          | 220,356 | 33,962 | 595,204            | 200,149        | 197,528 | 168,676 | 566,352        | 28,852          |  |
| 6,000                               | 344,916          | 217,603 | 34,783 | 597,302            | 208,851        | 194,226 | 168,676 | 571,752        | 25,550          |  |
| 6,250                               | 348,047          | 213,823 | 35,549 | 597,418            | 217,553        | 189,933 | 168,676 | 576,161        | 21,257          |  |
| 6,500                               | 350,278          | 209,015 | 36,260 | 595,553            | 226,255        | 184,649 | 168,676 | 579,580        | 15,973          |  |
| 6,750                               | 351,611          | 203,179 | 36,916 | 591,706            | 234,957        | 178,375 | 168,676 | 582,007        | 9,699           |  |
| 7,000                               | 352,044          | 196,315 | 37,518 | 585,878            | 243,659        | 171,109 | 168,676 | 583,444        | 2,433           |  |
| 7,250                               | 351,578          | 188,424 | 38,065 | 578,067            | 252,361        | 162,853 | 168,676 | 583,890        | -5,823          |  |
| 7,500                               | 350,213          | 179,505 | 38,558 | 568,275            | 261,063        | 153,606 | 168,676 | 583,345        | -15,070         |  |
| 7,750                               | 347,948          | 169,558 | 38,995 | 556,501            | 269,766        | 143,368 | 168,676 | 581,809        | -25,308         |  |
| 8,000                               | 344,784          | 158,583 | 39,378 | 542,746            | 278,468        | 132,139 | 168,676 | 579,282        | -36,537         |  |
| 8,250                               | 340,721          | 146,581 | 39,707 | 527,009            | 287,170        | 119,919 | 168,676 | 575,765        | -48,756         |  |
| 8,500                               | 335,759          | 133,550 | 39,981 | 509,290            | 295,872        | 106,709 | 168,676 | 571,257        | -61,967         |  |

# Appendix 3: Short-run Sustainable Relationship

| DAY AT SEA<br>PER YEAR PER<br>VESSEL |                  | 110     |        |         |                |         |         |         |                 |  |
|--------------------------------------|------------------|---------|--------|---------|----------------|---------|---------|---------|-----------------|--|
| Long-run Sustainable relationships   |                  |         |        |         |                |         |         |         |                 |  |
| Effort Reven                         |                  |         | 201    | Tetel   | Onerating cost |         |         | Total   | Net<br>benefits |  |
| (Day<br>at Sea)                      | Small<br>pelagic | Tuna    | Other  | revenue | Variable       | Wages   | Fixed   | cost    | (1000<br>CVE)   |  |
| 2,500                                | 206,662          | 162,612 | 17,356 | 386,630 | 87,021         | 149,805 | 51,114  | 287,940 | 98,691          |  |
| 2,750                                | 222,383          | 173,220 | 18,807 | 414,410 | 95,723         | 159,343 | 56,225  | 311,292 | 103,118         |  |
| 3,000                                | 237,204          | 182,801 | 20,206 | 440,210 | 104,425        | 167,893 | 61,337  | 333,655 | 106,556         |  |
| 3,250                                | 251,126          | 191,354 | 21,553 | 464,032 | 113,128        | 175,452 | 66,448  | 355,028 | 109,004         |  |
| 3,500                                | 264,148          | 198,879 | 22,848 | 485,875 | 121,830        | 182,023 | 71,559  | 375,412 | 110,464         |  |
| 3,750                                | 276,272          | 205,377 | 24,092 | 505,740 | 130,532        | 187,604 | 76,671  | 394,806 | 110,933         |  |
| 4,000                                | 287,496          | 210,846 | 25,283 | 523,625 | 139,234        | 192,196 | 81,782  | 413,212 | 110,414         |  |
| 4,250                                | 297,821          | 215,288 | 26,423 | 539,532 | 147,936        | 195,798 | 86,894  | 430,627 | 108,904         |  |
| 4,500                                | 307,246          | 218,702 | 27,511 | 553,460 | 156,638        | 198,411 | 92,005  | 447,054 | 106,406         |  |
| 4,750                                | 315,773          | 221,088 | 28,548 | 565,409 | 165,340        | 200,034 | 97,116  | 462,491 | 102,918         |  |
| 5,000                                | 323,400          | 222,447 | 29,532 | 575,379 | 174,042        | 200,668 | 102,228 | 476,938 | 98,441          |  |
| 5,250                                | 330,128          | 222,778 | 30,465 | 583,370 | 182,744        | 200,313 | 107,339 | 490,396 | 92,974          |  |
| 5,500                                | 335,956          | 222,081 | 31,346 | 589,383 | 191,447        | 198,968 | 112,450 | 502,865 | 86,518          |  |
| 5,750                                | 340,886          | 220,356 | 32,175 | 593,416 | 200,149        | 196,634 | 117,562 | 514,344 | 79,072          |  |
| 6,000                                | 344,916          | 217,603 | 32,952 | 595,471 | 208,851        | 193,310 | 122,673 | 524,834 | 70,637          |  |
| 6,250                                | 348,047          | 213,823 | 33,678 | 595,547 | 217,553        | 188,997 | 127,785 | 534,335 | 61,213          |  |
| 6,500                                | 350,278          | 209,015 | 34,351 | 593,645 | 226,255        | 183,695 | 132,896 | 542,846 | 50,799          |  |
| 6,750                                | 351,611          | 203,179 | 34,973 | 589,763 | 234,957        | 177,403 | 138,007 | 550,368 | 39,396          |  |
| 7,000                                | 352,044          | 196,315 | 35,543 | 583,903 | 243,659        | 170,122 | 143,119 | 556,900 | 27,003          |  |
| 7,250                                | 351,578          | 188,424 | 36,062 | 576,064 | 252,361        | 161,851 | 148,230 | 562,443 | 13,621          |  |
| 7,500                                | 350,213          | 179,505 | 36,528 | 566,246 | 261,063        | 152,591 | 153,342 | 566,996 | -750            |  |
| 7,750                                | 347,948          | 169,558 | 36,943 | 554,449 | 269,766        | 142,342 | 158,453 | 570,560 | -16,111         |  |
| 8,000                                | 344,784          | 158,583 | 37,306 | 540,673 | 278,468        | 131,103 | 163,564 | 573,135 | -32,461         |  |
| 8,250                                | 340,721          | 146,581 | 37,617 | 524,919 | 287,170        | 118,875 | 168,676 | 574,720 | -49,801         |  |
| 8,500                                | 335,759          | 133,550 | 37,876 | 507,186 | 295,872        | 105,657 | 173,787 | 575,316 | -68,130         |  |

## Appendix 4: Long-run Sustainable Relationship